ArticleOriginal scientific text
Title
Varieties of topological groups, Lie groups and SIN-groups
Authors 1, 2, 1
Affiliations
- Fachbereich Mathematik, Technische Hochschule Darmstadt, Schlossgartenstr. 7, D-64289 Darmstadt, Germany
- Faculty of Informatics, University of Wollongong, Wollongong, NSW 2522, Australia
Abstract
In this paper we answer three open problems on varieties of topological groups by invoking Lie group theory. We also reprove in the present context that locally compact groups with arbitrarily small invariant identity neighborhoods can be approximated by Lie groups
Keywords
pro-Lie group, varieties of topological groups, IN-group, SIN-group, Lie group
Bibliography
- R. W. Bagley, T. S. Wu and J. S. Yang, Pro-Lie groups, Trans. Amer. Math. Soc. 287 (1985), 829-838.
- N. Bourbaki, Topologie générale, Chap. 1, Hermann, Paris, 1965.
- M. S. Brooks, S. A. Morris and S. A. Saxon, Generating varieties of topological groups, Proc. Edinburgh Math. Soc. 18 (1973), 191-197.
- V. M. Gluškov [V. M. Glushkov], The structure of locally compact groups and Hilbert's Fifth Problem, Uspekhi Mat. Nauk 12 (2) (1957), 3-41 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. 2 15 (1960), 55-93.
- S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1-40.
- K. H. Hofmann and P. S. Mostert, Splitting in topological groups, Mem. Amer. Math. Soc. 43 (1963).
- K. Iwasawa, Topological groups with invariant neighborhoods of the identity, Ann. of Math. 54 (1951), 345-348.
- D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience, New York, 1955.
- S. A. Morris, Lie groups in varieties of topological groups, Colloq. Math. 30 (1974), 229-235.
- S. A. Morris, Varieties of topological groups: A survey, ibid. 46 (1982), 147-165.
- S. A. Morris and N. Kelly, Varieties of topological groups generated by groups with invariant compact neighborhoods of the identity, Mat. Časopis Sloven. Akad. Vied 25 (1975), 207-210.