ArticleOriginal scientific text

Title

Cyclic approximation of analytic cocycles over irrational rotations

Authors 1

Affiliations

  1. Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Keywords

real-analytic cocycle, cyclic approximation, Anzai skew product, weakly mixing cocycle

Bibliography

  1. [A] H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83-99.
  2. [BL] F. Blanchard and M. Lemańczyk, Measure-preserving diffeomorphisms with an arbitrary spectral multiplicity, Topol. Methods Nonlinear Anal. 1 (1993), 275-294.
  3. [CFS] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1982.
  4. [I] A. Iwanik, Generic smooth cocycles of degree zero over irrational rotations, Studia Math., to appear.
  5. [IS] A. Iwanik and J. Serafin, Most monothetic extensions are rank-1, Colloq. Math. 66 (1993), 63-76.
  6. [K] A. Katok, Constructions in ergodic theory, unpublished lecture notes.
  7. [KLR] J. Kwiatkowski, M. Lemańczyk and D. Rudolph, A class of cocycles having an analytic coboundary modification, Israel J. Math. 87 (1994), 337-360.
  8. [R] A. Robinson, Non-abelian extensions have nonsimple spectrum, Composito Math. 65 (1988), 155-170.
Pages:
73-78
Main language of publication
English
Received
1995-04-24
Published
1996
Exact and natural sciences