ArticleOriginal scientific textCharacterization of the boundedness for a family of commutators on
Title
Characterization of the boundedness for a family of commutators on
Authors 1
Affiliations
- Department of Mathematics, Washington University, St. Louis, Missouri 63130, U.S.A.
Bibliography
- F. Beatrous and S.-Y. Li, Boundedness and compactness of operators of Hankel type, J. Funct. Anal. 111 (1993), 350-379.
- M. Christ, Lectures on Singular Integral Operators, CBMS Regional Conf. Ser. in Math. 77, Amer. Math. Soc., 1990.
- M. Christ and D. Geller, Singular integral characterizations of Hardy spaces on homogeneous groups, Duke Math. J. 51 (1984), 547-598.
- R. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286.
- R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
- R. R. Coifman et G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
- C. Fefferman and E. M. Stein,
spaces of several variables, Acta Math. 129 (1972), 137-193. - S. Janson and J. Peetre, Paracommutators - boundedness and Schatten-von Neumann properties, Trans. Amer. Math. Soc. 305 (1988), 467-504.
- S. Janson and T. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 20 (1982), 301-310.
- S. G. Krantz and S.-Y. Li, On the decomposition theorems for Hardy spaces and applications in domains in
, J. Fourier Anal., to appear. - S. G. Krantz and S.-Y. Li, Hardy spaces, integral operators on spaces of homogeneous type, preprint, 1994.
- S. G. Krantz and S.-Y. Li, Factorizations of functions in subspaces of
and applications to Corona problem, preprint, 1995. - C. Li, Boundedness of paracommutators on
spaces, Acta Math. Sinica 6 (1990), 131-147. - C. Li, A. McIntosh and S. Semmes, Convolution singular integrals on Lipschitz surfaces, J. Amer. Math. Soc. 5 (1992), 455-481.
- R. Rochberg and S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 237-306.
- E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, N.J., 1993.
- E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N.J., 1971.
- A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math J. 30 (1978), 163-171.
- A. Uchiyama, A constructive proof of the Fefferman-Stein decomposition of
, Acta Math. 148 (1982), 215-241. - Z. Wu, Clifford algebra, Hardy spaces and compensated compactness, preprint, 1994.