ArticleOriginal scientific text

Title

Coverable Radon measures in topological spaces with covering properties

Authors 1

Affiliations

  1. Department of Mathematics, Saitama University, Urawa 338, Japan

Bibliography

  1. [ArPo] A. V. Arkhangel'skiĭ and V. I. Ponomarev, Fundamentals of General Topology, D. Reidel, Boston, 1983.
  2. [Bu] D. K. Burke, Covering properties, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 347-422.
  3. [En] R. Engelking, General Topology, PWN, Warszawa, 1977.
  4. [Fr] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, London, 1974.
  5. [GaPf1] R. J. Gardner and W. F. Pfeffer, Some undecidability results concerning Radon measures, Trans. Amer. Math. Soc. 259 (1980), 65-74.
  6. [GaPf2] R. J. Gardner and W. F. Pfeffer, Relation between the regularity and σ-finiteness of Radon measures, Russian Math. Surveys 35 (3) (1980), 35-40.
  7. [GaPf3] R. J. Gardner and W. F. Pfeffer, Decomposability of Radon measures, Trans. Amer. Math. Soc. 283 (1984), 283-293.
  8. [GaPf4] R. J. Gardner and W. F. Pfeffer, Borel measures, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 961-1043.
  9. [Gr1] G. Gruenhage, Generalized metric spaces, ibid., 423-501.
  10. [Gr2] G. Gruenhage, Generalized metric spaces and metrization, in: Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), North-Holland, Amsterdam, 1992, 239-274.
  11. [GrPf] G. Gruenhage and W. F. Pfeffer, When inner regularity of Borel measures implies regularity, J. London Math. Soc. (2) 17 (1978), 165-171.
  12. [Ha] P. R. Halmos, Measure Theory, Springer, New York, 1974.
  13. [Ku1] Y. Kubokawa, Coverable standard measures with the chain condition and the Lebesgue decomposition, Czechoslovak Math. J. 45 (1995), 315-324.
  14. [Ku2] Y. Kubokawa, Localizable non-measurable measures and the Radon-Nikodym theorem, in preparation.
  15. [LuMu] H. Luschgy and D. Mussmann, Equivalent properties and completion of statistical experiments, Sankhyā Ser. A 47 (1985), 174-195.
  16. [Ma] Encyclopedic Dictionary of Mathematics, edited by Math. Soc. Japan, 293F: Dominated statistical structure, Iwanami-shoten, Tokyo, 1985, 873-874 (in Japanese).
  17. [O] S. Okada, Support of Borel measures, J. Austral. Math. Soc. Ser. A 27 (1979), 221-231.
  18. [P] P. Prinz, Negligible sets of Radon measures, Proc. Amer. Math. Soc. 89 (1983), 440-444.
  19. [RaYa] R. V. Ramoorthi and S. Yamada, On the union of compact statistical structures, Osaka J. Math. 20 (1983), 257-263.
  20. [Sc] L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford Univ. Press, London, 1973.
  21. [Ya] Y. Yasui, Generalized paracompactness, in: Topics in General Topology, K. Morita and J. Nagata (eds.), North-Holland, Amsterdam, 1989, 161-202.
Pages:
13-23
Main language of publication
English
Received
1994-02-11
Accepted
1995-02-15
Published
1996
Exact and natural sciences