ArticleOriginal scientific text

Title

Boundedness of singular integral operators with holomorphic kernels on star-shaped closed Lipschitz curves

Authors 1, 2, 3

Affiliations

  1. School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia
  2. Department of Mathematics, The University of New England, Armidale, NSW 2351, Australia
  3. Department of Mathematics, Hangzhou University, Hangzhou, Zhejiang P.R. China

Abstract

The aim of this paper is to study singular integrals T generated by holomorphic kernels defined on a natural neighbourhood of the set {zζ-1:z,ζ,zζ}, where is a star-shaped Lipschitz curve, ={exp(iz):z=x+iA(x),AL[-π,π],A(-π)=A(π)}. Under suitable conditions on F and z, the operators are given by (1) TF(z)=p.v.zη-1F(η)(dηη). We identify a class of kernels of the stated type that give rise to bounded operators on L2(,|d|). We establish also transference results relating the boundedness of kernels on closed Lipschitz curves to corresponding results on periodic, unbounded curves.

Bibliography

  1. [D] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. 17 (1984), 157-189.
  2. [DJS] G. David, J.-L. Journé et S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56.
  3. [CGQ] M. G. Cowling, G. I. Gaudry and T. Qian, A note on martingales with respect to complex measures, in: Miniconf. on Operators in Analysis, Macquarie Univ., Sept. 1989, Proc. Centre Math. Anal. Austral. Nat. Univ. 24, Austral. Nat. Univ., Canberra, 1989, 10-27.
  4. [CJS] R. R. Coifman, P. W. Jones and S. Semmes, Two elementary proofs of the L2 boundedness of Cauchy integrals on Lipschitz curves, J. Amer. Math. Soc. 2 (1989), 553-564.
  5. [CM1] R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderón's theorem, and analysis on Lipschitz curves, in: Lecture Notes in Math. 779, Springer 1980, 104-122.
  6. [CM2] R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978).
  7. [CMcM] R. Coifman, A. McIntosh et Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Ann. of Math. 116 (1982), 361-387.
  8. [deL] K. de Leeuw, On Lp multipliers, Ann. of Math. 81 (1965), 364-379.
  9. [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1970.
  10. [GLQ] A martingale proof of L2 boundedness of Clifford-valued singular integrals, Ann. Mat. Pura Appl. 165 (1993), 369-394.
  11. [JK] D. Jerison and C. Kenig, Hardy spaces, A, and singular integrals on chord-arc domains, Math. Scand. 50 (1982), 221-247.
  12. [K] C. E. Kenig, Weighted Hp spaces on Lipschitz domains, Amer. J. Math. 102 (1980), 129-163.
  13. [LMcS] C. Li, A. McIntosh and S. Semmes, Convolution singular integral operators on Lipschitz surfaces, to appear.
  14. [LMcQ] C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, Rev. Mat. Iberoamericana, to appear.
  15. [Mc] A. McIntosh, Operators which have an H-functional calculus, in: Miniconf. on Operator Theory and Partial Differential Equations, 1986, Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra, 14 Austral. Nat. Univ., 1986, 210-231.
  16. [McQ1] A. McIntosh and T. Qian, Convolution singular integral operators on Lipschitz curves, in: Lecture Notes in Math. 1494, Springer, 1991, 142-162.
  17. [McQ2] A. McIntosh and T. Qian, A note on singular integrals with holomorphic kernels, Approx. Theory Appl. 6 (1990), 40-54.
  18. [McQ3] A. McIntosh and T. Qian, Fourier multipliers on Lipschitz curves, Trans. Amer. Math. Soc. 333 (1992), 157-176.
  19. [Q] T. Qian, Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves, preprint.
  20. [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
  21. [T] T. Tao, Convolution operators generated by right-monogenic and harmonic kernels, M.Sc. thesis, Flinders Univ. of South Australia, 1992; Paper of same title, submitted.
  22. [Z] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1968.
Pages:
133-150
Main language of publication
English
Received
1994-11-08
Accepted
1995-08-30
Published
1996
Exact and natural sciences