ArticleOriginal scientific text
Title
On the volume method in the study of Auerbach bases of finite-dimensional normed spaces
Authors 1
Affiliations
- Institute of Applied Problems of Mechanics and Mathematics, Ukrainian Academy of Sciences, Naukova 3b, 290053 L'viv, Ukraine
Abstract
In this note we show that if the ratio of the minimal volume V of n-dimensional parallelepipeds containing the unit ball of an n-dimensional real normed space X to the maximal volume v of n-dimensional crosspolytopes inscribed in this ball is equal to n!, then the relation of orthogonality in X is symmetric. Hence we deduce the following properties: (i) if V/v=n! and if n>2, then X is an inner product space; (ii) in every finite-dimensional normed space there exist at least two different Auerbach bases and (iii) the finite-dimensional normed space X is an inner product space provided any two Auerbach bases are isometrically equivalent. Property (i) generalizes a result of Lenz [8], and (iii) answers a question of R. J. Knowles and T. A. Cook [7].
Bibliography
- H. Auerbach, O polu krzywych wypukłych o średnicach sprzężonych (On the area of convex curves with conjugate diameters), Ph.D. thesis, L'viv University, 1930 (in Polish).
- H. Auerbach, Über eine Eigenschaft der Eilinien mit Mittelpunkt, Ann. Soc. Polon. Math. 9 (1930), 204.
- H. Auerbach, Sur les groupes linéaires bornés, I-III, Studia Math. 4 (1933), 113-127, 158-166; 5 (1934), 43-49.
- S. Banach, Théorie des opérations linéaires, Warszawa, 1932.
- M. M. Day, Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc. 62 (1947), 315-319.
- R. C. James, Inner products in normed linear spaces, Bull. Amer. Math. Soc. 53 (1947), 559-566.
- R. J. Knowles and T. A. Cook, Some results on Auerbach bases for finite-dimensional normed spaces, Bull. Soc. Roy. Sci. Liège 42 (1973), 518-522.
- H. Lenz, Eine Kennzeichnung des Ellipsoids, Arch. Math. (Basel) 8 (1957), 209-211.
- A. Yu. Levin and Yu. I. Petunin, Some questions connected with the notion of orthogonality in a Banach space, Uspekhi Mat. Nauk 18 (3) (1963), 167-170 (in Russian).
- A. Pełczyński and S. J. Szarek, On parallelepipeds of minimal volume containing a convex symmetric body in
, Math. Proc. Cambridge Philos. Soc. 109 (1991), 125-148. - A. Pietsch, Operator Ideals, Deutsch. Verlag Wiss., Berlin, 1978.
- S. Rolewicz, Metric Linear Spaces, Reidel and PWN, Dordrecht-Warszawa, 1985.
- A. F. Ruston, Auerbach's theorem and tensor products of Banach spaces, Proc. Cambridge Philos. Soc. 58 (1962), 476-480.
- A. E. Taylor, A geometric theorem and its application to biorthogonal systems, Bull. Amer. Math. Soc. 53 (1947), 614-616.