PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 69 | 2 | 193-211
Tytuł artykułu

Irreducible representations of free products of infinite groups

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
69
Numer
2
Strony
193-211
Opis fizyczny
Daty
wydano
1996
otrzymano
1994-05-06
poprawiono
1994-11-21
Twórcy
  • Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
  • [BCR] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer, 1984.
  • [B1] M. Bożejko, Uniformly bounded representations of free groups, J. Reine Angew. Math. 377 (1987), 170-186.
  • [B2] M. Bożejko, Positive-definite kernels, length functions on groups and a noncommutative von Neumann inequality, Studia Math. 95 (1989), 107-118.
  • [BF] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. D (6) 3-A (1984), 297-302.
  • [CS] D. I. Cartwright and P. M. Soardi, Harmonic analysis on the free product of two cyclic groups, J. Funct. Anal. 65 (1986), 147-171.
  • [Di] J. Dixmier, C*-algebras, North-Holland, Amsterdam, 1977.
  • [FP1] A. Figà-Talamanca and M. A. Picardello, Spherical functions and har- monic analysis on free groups, J. Funct. Anal. 47 (1982), 281-304.
  • [FP2] A. Figà-Talamanca and M. A. Picardello, Harmonic Analysis on Free Groups, Lecture Notes in Pure and Appl. Math. 87, Dekker, New York, 1983.
  • [IP] A. Iozzi and M. A. Picardello, Spherical functions on symmetric graphs, in: Harmonic Analysis, Proc. Cortona 1982, Lecture Notes in Math. 992, Springer, 1983, 344-387.
  • [M1] W. Młotkowski, Positive definite radial functions on free product of groups, Boll. Un. Mat. Ital. (7) 2-B (1988), 53-66.
  • [M2] W. Młotkowski, Positive definite functions on free product of groups, ibid. (7) 3-B (1989), 343-355.
  • [M3] W. Młotkowski, Type-dependent positive definite functions on free products of groups, Colloq. Math. 64 (1993), 41-54.
  • [NF] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, 1970.
  • [PS] T. Pytlik and R. Szwarc, An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986), 286-309.
  • [Se] J.-P. Serre, Trees, Springer, Berlin, 1980.
  • [Sz1] R. Szwarc, Matrix coefficients of irreducible representations of free products of groups, Studia Math. 94 (1989), 179-185.
  • [Sz2] R. Szwarc, Groups acting on trees and approximation properties of the Fourier algebra, J. Funct. Anal. 95 (1991), 320-343.
  • [Va] A. Valette, Cocycles d'arbres et représentations uniformément bornées, C. R. Acad. Sci. Paris Sér. I 310 (1990), 703-708.
  • [W1] J. Wysoczański, Herz-Schur multipliers and uniformly bounded representations of free products of discrete groups, Ph.D. Thesis, Uniwersytet Wrocławski, 1990.
  • [W2] J. Wysoczański, An analytic family of uniformly bounded representations of a free product of discrete groups, Pacific J. Math. 157 (1993), 373-387.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv69i2p193bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.