ArticleOriginal scientific text
Title
The closure of the invertibles in a von Neumann algebra
Authors 1, 2
Affiliations
- Dipartimento di Matematica, università di Genova, via Dodecaneso 35, 16146 Genova, Italy
- Queen's University, Belfast BT7 1NN, Northern Ireland, UK
Abstract
In this paper we consider a subset  of a Banach algebra A (containing all elements of A which have a generalized inverse) and characterize membership in the closure of the invertibles for the elements of Â. Thus our result yields a characterization of the closure of the invertible group for all those Banach algebras A which satisfy  = A. In particular, we prove that  = A when A is a von Neumann algebra. We also derive from our characterization new proofs of previously known results, namely Feldman and Kadison's characterization of the closure of the invertibles in a von Neumann algebra and a more recent characterization of the closure of the invertibles in the bounded linear operators on a Hilbert space.
Bibliography
- R. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517.
- R. Bouldin, Closure of the invertible operators in Hilbert space, Proc. Amer. Math. Soc. 108 (1990), 721-726.
- R. Bouldin, Approximating Fredholm operators on a nonseparable Hilbert space, Glasgow Math. J. 35 (1993), 167-178.
- L. Burlando, On continuity of the spectral radius function in Banach algebras, Ann. Mat. Pura Appl. (4) 156 (1990), 357-380.
- L. Burlando, Distance formulas on operators whose kernel has fixed Hilbert dimension, Rend. Mat. (7) 10 (1990), 209-238.
- L. Burlando, Approximation by semi-Fredholm and semi-α-Fredholm operators in Hilbert spaces of arbitrary dimension, to appear.
- G. Edgar, J. Ernest and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971), 61-80.
- J. Feldman and R. V. Kadison, The closure of the regular operators in a ring of operators, Proc. Amer. Math. Soc. 5 (1954), 909-916.
- C. W. Groetsch, Representations of the generalized inverse, J. Math. Anal. Appl. 49 (1975), 154-157.
- R. E. Harte, Regular boundary elements, Proc. Amer. Math. Soc. 99 (1987), 328-330.
- R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
- R. E. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77.
- R. E. Harte and M. Mbekhta, Generalized inverses in C*-algebras II, ibid. 106 (1993), 129-138.
- R. E. Harte and M. Ó Searcóid, Positive elements and the B* condition, Math. Z. 193 (1986), 1-9.
- T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.
- G. J. Murphy, C*-algebras and Operator Theory, Academic Press, 1990.
- C. Olsen, Unitary approximation, J. Funct. Anal. 85 (1989), 392-419.
- G. K. Pedersen, Unitary extension and polar decomposition in a C*-algebra, J. Operator Theory 17 (1987), 357-364.
- S. Sakai, C*-algebras and W*-algebras, Springer, New York, 1971.
- J. Weidmann, Linear Operators in Hilbert Spaces, Springer, New York, 1980.