ArticleOriginal scientific text

Title

A multifractal analysis of an interesting class of measures

Authors 1

Affiliations

  1. Department of Mathematics, University of Crete, Iraklion 71409, Greece

Keywords

Hausdorff dimension, multifractal, Rademacher Riesz products

Bibliography

  1. P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965.
  2. A. Bisbas, A note on the distribution of digits in dyadic expansions, C. R. Acad. Sci. Paris 318 (1994), 105-109.
  3. A. Bisbas, On the distribution of digits in triadic expansions, preprint.
  4. A. Bisbas and C. Karanikas, On the Hausdorff dimension of Rademacher Riesz products, Monatsh. Math. 110 (1990), 15-21.
  5. A. Bisbas and C. Karanikas, On the continuity of measures, Appl. Anal. 48 (1993), 23-35.
  6. J. R. Blum and B. Epstein, On the Fourier transforms of an interesting class of measures, Israel J. Math. 10 (1971), 302-305.
  7. H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number theory, Proc. London Math. Soc. (2) 54 (1952), 42-93.
  8. A. H. Fan, Quelques propriétés des produits de Riesz, Bull. Sci. Math. 117 (1993), 421-439.
  9. C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, Berlin, 1979.
  10. J.-P. Kahane, Fractals and random measures, Bull. Sci. Math. 117 (1993), 153-159.
  11. G. Marsaglia, Random variables with independent binary digits, Ann. Math. Statist. 42 (1971), 1922-1929.
  12. R. Salem, On singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), 427-439.
Pages:
37-42
Main language of publication
English
Received
1994-06-07
Published
1996
Exact and natural sciences