ArticleOriginal scientific text
Title
A multifractal analysis of an interesting class of measures
Authors 1
Affiliations
- Department of Mathematics, University of Crete, Iraklion 71409, Greece
Keywords
Hausdorff dimension, multifractal, Rademacher Riesz products
Bibliography
- P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965.
- A. Bisbas, A note on the distribution of digits in dyadic expansions, C. R. Acad. Sci. Paris 318 (1994), 105-109.
- A. Bisbas, On the distribution of digits in triadic expansions, preprint.
- A. Bisbas and C. Karanikas, On the Hausdorff dimension of Rademacher Riesz products, Monatsh. Math. 110 (1990), 15-21.
- A. Bisbas and C. Karanikas, On the continuity of measures, Appl. Anal. 48 (1993), 23-35.
- J. R. Blum and B. Epstein, On the Fourier transforms of an interesting class of measures, Israel J. Math. 10 (1971), 302-305.
- H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number theory, Proc. London Math. Soc. (2) 54 (1952), 42-93.
- A. H. Fan, Quelques propriétés des produits de Riesz, Bull. Sci. Math. 117 (1993), 421-439.
- C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, Berlin, 1979.
- J.-P. Kahane, Fractals and random measures, Bull. Sci. Math. 117 (1993), 153-159.
- G. Marsaglia, Random variables with independent binary digits, Ann. Math. Statist. 42 (1971), 1922-1929.
- R. Salem, On singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), 427-439.