ArticleOriginal scientific text

Title

Multiplier theorem on generalized Heisenberg groups II

Authors 1, 1

Affiliations

  1. Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

We prove that on a product of generalized Heisenberg groups, a Hörmander type multiplier theorem for Rockland operators is true with the critical index n/2 + ϵ, ϵ>0, where n is the euclidean (topological) dimension of the group.

Bibliography

  1. M. Christ, Lp bound for spectral multiplier on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73-81.
  2. J. Cygan, Heat kernels for class 2 nilpotent groups, Studia Math. 64 (1979), 227-238.
  3. J. Dziubański, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77-83.
  4. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.
  5. B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), 95-153.
  6. P. Głowacki, The Rockland condition for nondifferential convolution operators, Duke Math. J. 58 (1989), 371-395.
  7. W. Hebisch, A multiplier theorem for Schrödinger operators, Colloq. Math. 60/61 (1990), 659-664.
  8. W. Hebisch, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263-275.
  9. W. Hebisch, Multiplier theorem on generalized Heisenberg groups, Colloq. Math. 65 (1993), 231-239.
  10. W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236.
  11. B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 3 (1978), 889-958.
  12. A. Hulanicki, Subalgebra of L1(G) associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287.
  13. A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), 165-179.
  14. A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, ibid. 80 (1984), 235-244.
  15. G. Mauceri and S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 3-4 (6) (1990), 141-154.
  16. D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl., to appear.
  17. J. Randall, The heat kernel for generalized Heisenberg groups, to appear.
Pages:
29-36
Main language of publication
English
Received
1993-12-13
Accepted
1994-05-16
Published
1996
Exact and natural sciences