ArticleOriginal scientific text

Title

Negatively reduced ideals in orders of real quadratic fields: even discriminants

Authors 1, 2

Affiliations

  1. Institut für Mathematik, Karl-Franzens-Universität, Heinrichstr. 36/IV, A-8010 Graz, Austria
  2. Department of Mathematics, Arizona State University, UMA-1804, Tempe, Arizona 85287-1804, U.S.A.

Bibliography

  1. P. G. L. Dirichlet und R. Dedekind, Vorlesungen über Zahlentheorie, Chelsea, 1968.
  2. P. Kaplan, Idéaux k-réduits des ordres des corps quadratiques réels, in preparation.
  3. P. Kaplan et P. A. Leonard, Idéaux négativement réduits d'un corps quadratique réel et un problème d'Eisenstein, Enseign. Math. 39 (1993), 195-210.
  4. P. Kaplan and K. S. Williams, The distance between ideals in the orders of a real quadratic field, ibid. 36 (1990), 321-358.
  5. H. Koch, Algebraic number fields, in: Number Theory II, A. N. Parshin and I. R. Shafarevich (eds.), Springer, 1992.
  6. Y. Mimura, On odd solutions of the equation X2-DY2=4, in: Proc. Sympos. on Analytic Number Theory and Related Topics, Gakushuin University, Tokyo, 1992, 110-118.
  7. D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Pages:
147-153
Main language of publication
English
Received
1994-11-15
Published
1996
Exact and natural sciences