ArticleOriginal scientific text

Title

On partitioning Sidon sets with quasi-independent sets

Authors 1, 2

Affiliations

  1. School of Mathematical and Physical Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
  2. Mathematics, Keller Hall, 2565 The Mall, Honolulu, Hawaii 96822, U.S.A.

Keywords

Sidon, quasi-independent, N-independent, dissociate

Bibliography

  1. W. H. Beyer (ed.), CRC Standard Mathematical Tables, 28th Edition, CRC Press, Boca Raton, Florida, 1981, 58-59.
  2. C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979, 371-372.
  3. D. Grow and W. C. Whicher, Finite unions of quasi-independent sets, Canad. Math. Bull. 27 (4) (1984), 490-493.
  4. Y. Katznelson, Suites aléatoires d'entiers, Lecture Notes in Math. 336, Springer, 1973, 148-152.
  5. Y. Katznelson, Sequences of integers dense in the Bohr group, Proc. Roy. Inst. Tech., June 1973, 73-86.
  6. Y. Katznelson et P. Malliavin, Vérification statistique de la conjecture de la dichotomie sur une classe d'algèbres de restriction, C. R. Acad. Sci. Paris Sér. A 262 (1966), 490-492.
  7. J. M. López and K. M. Ross, Sidon Sets, Marcel Dekker, New York, 1975, 19-44.
  8. G. Pisier, Arithmetic characterization of Sidon sets, Bull. Amer. Math. Soc. 8 (1983), 87-89.
Pages:
117-131
Main language of publication
English
Received
1994-09-08
Published
1996
Exact and natural sciences