ArticleOriginal scientific text
Title
On partitioning Sidon sets with quasi-independent sets
Authors 1, 2
Affiliations
- School of Mathematical and Physical Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
- Mathematics, Keller Hall, 2565 The Mall, Honolulu, Hawaii 96822, U.S.A.
Keywords
Sidon, quasi-independent, N-independent, dissociate
Bibliography
- W. H. Beyer (ed.), CRC Standard Mathematical Tables, 28th Edition, CRC Press, Boca Raton, Florida, 1981, 58-59.
- C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979, 371-372.
- D. Grow and W. C. Whicher, Finite unions of quasi-independent sets, Canad. Math. Bull. 27 (4) (1984), 490-493.
- Y. Katznelson, Suites aléatoires d'entiers, Lecture Notes in Math. 336, Springer, 1973, 148-152.
- Y. Katznelson, Sequences of integers dense in the Bohr group, Proc. Roy. Inst. Tech., June 1973, 73-86.
- Y. Katznelson et P. Malliavin, Vérification statistique de la conjecture de la dichotomie sur une classe d'algèbres de restriction, C. R. Acad. Sci. Paris Sér. A 262 (1966), 490-492.
- J. M. López and K. M. Ross, Sidon Sets, Marcel Dekker, New York, 1975, 19-44.
- G. Pisier, Arithmetic characterization of Sidon sets, Bull. Amer. Math. Soc. 8 (1983), 87-89.