ArticleOriginal scientific text
Title
Stochastic viability and a comparison theorem
Authors 1
Affiliations
- Institute of Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
Abstract
We give explicit necessary and sufficient conditions for the viability of polyhedrons with respect to Itô equations. Using the viability criterion we obtain a comparison theorem for multi-dimensional Itô processes
Bibliography
- J.-P. Aubin, Viability theory, to appear.
- J.-P. Aubin and A. Cellina, Differential Inclusions, Springer, 1984.
- J.-P. Aubin and G. Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa 27 (1990), 595-694.
- J.-P. Aubin and G. Da Prato, Stochastic Nagumo's viability theorem, Cahiers de Mathématiques de la Décision 9224, CEREMADE.
- K. Borsuk, Multidimensional Analytic Geometry, PWN, 1969.
- R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth Adv. Books and Software, Wadsworth, Belmont, Calif., 1984.
- S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, 1986.
- S. Gautier and L. Thibault, Viability for constrained stochastic differential equations, Differential and Integral Equations 6 (1993), 1395-1414.
- I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer, 1972.
- N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, 1981.
- D. Isaacson, Stochastic integrals and derivatives, Ann. Math. Statist. 40 (1969), 1610-1616.
- A. Milian, A note on the stochastic invariance for Itô equations, Bull. Polish Acad. Sci. Math. 41 (1993), 139-150.
- B. N. Pshenichnyĭ, Convex Analysis and Extremal Problems, Nauka, Moscow, 1980 (in Russian).
- J. T. Schwartz, Nonlinear Functional Analysis, Courant Inst. Math. 1965.
- C. Yoerp, Sur la dérivation des intégrales stochastiques, in: Sém. Probab. XV, Lecture Notes in Math. 784, Springer, 1980, 249-253.