ArticleOriginal scientific text
Title
Linear combinations of Cantor sets
Authors 1
Affiliations
- Department of Mathematics, The University of Texas at El Paso, El Paso, Texas 79968, U.S.A.
Bibliography
- E. Barone, Sul codominio di misure e di masse finite, Rend. Mat. Appl. 3 (2) (1983), 229-238.
- J. A. Guthrie and J. E. Nymann, The topological structure of the set of subsums of an infinite series, Colloq. Math. 55 (1988), 323-327.
- H. Hornich, Über beliebige Teilsummen absolut konvergenter Reihen, Monatsh. Math. Phys. 49 (1941), 316-320.
- S. Kakeya, On the partial sums of an infinite series, Tôhoku Sci. Rep. 3 (4) (1914), 159-164.
- S. Koshi and H.-C. Lai, The ranges of set functions, Hokkaido Math. J. 10, special issue (1981), 348-360.
- P. K. Menon, On a class of perfect sets, Bull. Amer. Math. Soc. 54 (1948), 706-711.
- J. E. Nymann, The sum of the Cantor set with itself, Enseign. Math. 39 (1993), 177-178.
- M. Pavone, The Cantor set and a geometric construction, ibid. 35 (1989), 41-49.
- J. Shallit, Q785, Math. Mag. 64 (5) (1991), 351 and 357.
- P. Mendes and F. Oliveira, On the topological structure of the arithmetic sum of two Cantor sets, Nonlinearity 7 (1994), 329-343.