ArticleOriginal scientific text
Title
Almost Everywhere Convergence of Riesz-Raikov Series
Authors 1
Affiliations
- Mathématiques (Bât. I), Université de Cergy-Pontoise, 8, le Campus, 95033 Cergy-Pontoise, France
Abstract
Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series converges almost everywhere with respect to Lebesgue measure provided that .
Keywords
Riesz-Raikov series, quasi-orthogonality, Bernoulli measures
Bibliography
- G. Brown and A. H. Dooley, Odometer actions on G-measures, Ergodic Theory Dynamical Systems, 11 (1991), 279-307.
- M. Kac, R. Salem and A. Zygmund, A gap theorem, Trans. Amer. Math. Soc. 63 (1948), 235-243.
- S. Kakutani and K. Petersen, The speed of convergence in the Ergodic Theorem, Monatsh. Math. 91 (1981), 11-18.
- K. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
- D. A. Raikov, On some arithmetical properties of summable functions, Mat. Sb. 1 (43) (1936), 377-384 (in Russian).
- F. Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1944-1945), 217-248.
- J. Rosenblatt, Convergence of series of translations, Math. Ann. 230 (1977), 245-272.
- J. Rosenblatt and A. del Junco, Counterexamples in ergodic theory and number theory, Math. Ann. 245 (1979), 185-197.
- A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge Univ. Press, 1959.