ArticleOriginal scientific text

Title

Almost Everywhere Convergence of Riesz-Raikov Series

Authors 1

Affiliations

  1. Mathématiques (Bât. I), Université de Cergy-Pontoise, 8, le Campus, 95033 Cergy-Pontoise, France

Abstract

Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series n=1cnf(Tnx) converges almost everywhere with respect to Lebesgue measure provided that n=1|cn|2log2n<.

Keywords

Riesz-Raikov series, quasi-orthogonality, Bernoulli measures

Bibliography

  1. G. Brown and A. H. Dooley, Odometer actions on G-measures, Ergodic Theory Dynamical Systems, 11 (1991), 279-307.
  2. M. Kac, R. Salem and A. Zygmund, A gap theorem, Trans. Amer. Math. Soc. 63 (1948), 235-243.
  3. S. Kakutani and K. Petersen, The speed of convergence in the Ergodic Theorem, Monatsh. Math. 91 (1981), 11-18.
  4. K. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
  5. D. A. Raikov, On some arithmetical properties of summable functions, Mat. Sb. 1 (43) (1936), 377-384 (in Russian).
  6. F. Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1944-1945), 217-248.
  7. J. Rosenblatt, Convergence of series of translations, Math. Ann. 230 (1977), 245-272.
  8. J. Rosenblatt and A. del Junco, Counterexamples in ergodic theory and number theory, Math. Ann. 245 (1979), 185-197.
  9. A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge Univ. Press, 1959.
Pages:
241-248
Main language of publication
English
Received
1994-01-31
Accepted
1994-07-08
Published
1995
Exact and natural sciences