PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 68 | 2 | 229-239
Tytuł artykułu

Existence and nonexistence of solutions for a model of gravitational interaction of particles, III

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Rocznik
Tom
68
Numer
2
Strony
229-239
Opis fizyczny
Daty
wydano
1995
otrzymano
1994-06-15
Twórcy
autor
  • Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
  • [1] J. Aguirre and M. Escobedo, On the blow-up of solutions of a convective reaction-diffusion equation, Proc. Roy. Soc. Edinburgh 123A (1993), 433-460.
  • [2] P. Baras et M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18 (1984), 111-149.
  • [3] P. Baras et M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185-212.
  • [4] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal. 19 (1992), 1121-1136.
  • [5] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, preprint, 1994.
  • [6] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Anal. 23 (1994), 1189-1209.
  • [7] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, Colloq. Math. 67 (1994), 297-308.
  • [8] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, ibid. 66 (1993), 131-145.
  • [9] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334.
  • [10] Y. Derriennic, Entropie, théorèmes limite et marches aléatoires, in: Probability Measures on Groups VIII, H. Heyer (ed.), Lecture Notes in Math. 1210, Springer, Berlin, 1986, 241-284.
  • [11] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319.
  • [12] Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, ibid. 42 (1989), 845-884.
  • [13] O. Kavian, A remark on the blowing-up solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), 193-203.
  • [14] A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107.
  • [15] A. A. Lacey and D. E. Tzanetis, Global unbounded solutions to a parabolic equation, J. Differential Equations 101 (1993), 80-102.
  • [16] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Springer, New York, 1994.
  • [17] R. McEliece, The Theory of Information and Coding, Encyclopedia Math. Appl. 3, Addison-Wesley, Reading, 1977.
  • [18] T. Nadzieja, A model of radially symmetric cloud of self-attracting particles, Applicationes Math., to appear.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv68i2p229bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.