ArticleOriginal scientific text

Title

A note on the integer solutions ofhyperelliptic equations

Authors 1

Affiliations

  1. Department of Mathematics, Zhanjiang Teacher's College, P.O. Box 524048, Zhanjiang, Guangdong, P.R. China

Bibliography

  1. A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444.
  2. L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
  3. C. Ko, On the diophantine equation x2=yn+1, xy ≠ 0, Sci. Sinica 14 (1964), 457-460.
  4. V. A. Lebesgue, Sur l'impossibilité, en nombres entiers, de l'équation xm=y2+1, Nouv. Ann. Math. (1) 9 (1850), 178-181.
  5. W. J. LeVeque, On the equation ym=f(x), Acta Arith. 9 (1964), 209-219.
  6. W. Ljunggren, Noen setninger om ubestemte likninger av formen xn-1x-1=yq, Norsk. Mat. Tidsskr. 25 (1943), 17-20.
  7. H. L. Montgomery and R. C. Vaughan, The order of magnitude of mth coefficients of cyclotomic polynomials, Glasgow Math. J. 27 (1985), 143-159.
  8. J. Riordan, Introduction to Combinatorial Analysis, Wiley, 1958.
  9. A. Rotkiewicz and W. Złotkowski, On the diophantine equation 1+pα_1+......+pα_k=y2, in: Number Theory, Vol. II (Budapest 1987), North-Holland, Amsterdam, 1990, 917-937.
  10. V. G. Sprindžuk, Hyperelliptic diophantine equation and class numbers of ideals, Acta Arith. 30 (1976), 95-108 (in Russian).
  11. P. G. Walsh, A quantitative version of Runge's theorem on diophantine equations, Acta Arith. 62 (1992), 157-172.
Pages:
171-177
Main language of publication
English
Received
1993-04-26
Published
1995
Exact and natural sciences