ArticleOriginal scientific text
Title
A note on the integer solutions ofhyperelliptic equations
Authors 1
Affiliations
- Department of Mathematics, Zhanjiang Teacher's College, P.O. Box 524048, Zhanjiang, Guangdong, P.R. China
Bibliography
- A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444.
- L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
- C. Ko, On the diophantine equation
, xy ≠ 0, Sci. Sinica 14 (1964), 457-460. - V. A. Lebesgue, Sur l'impossibilité, en nombres entiers, de l'équation
, Nouv. Ann. Math. (1) 9 (1850), 178-181. - W. J. LeVeque, On the equation
, Acta Arith. 9 (1964), 209-219. - W. Ljunggren, Noen setninger om ubestemte likninger av formen
, Norsk. Mat. Tidsskr. 25 (1943), 17-20. - H. L. Montgomery and R. C. Vaughan, The order of magnitude of mth coefficients of cyclotomic polynomials, Glasgow Math. J. 27 (1985), 143-159.
- J. Riordan, Introduction to Combinatorial Analysis, Wiley, 1958.
- A. Rotkiewicz and W. Złotkowski, On the diophantine equation
, in: Number Theory, Vol. II (Budapest 1987), North-Holland, Amsterdam, 1990, 917-937. - V. G. Sprindžuk, Hyperelliptic diophantine equation and class numbers of ideals, Acta Arith. 30 (1976), 95-108 (in Russian).
- P. G. Walsh, A quantitative version of Runge's theorem on diophantine equations, Acta Arith. 62 (1992), 157-172.