PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 68 | 1 | 81-100
Tytuł artykułu

Estimates for the Bergman and Szegö projections in two symmetric domains of $ℂ^{n}$

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
68
Numer
1
Strony
81-100
Opis fizyczny
Daty
wydano
1995
otrzymano
1993-12-14
poprawiono
1994-06-14
Twórcy
  • Université de Yaounde, Mathématiques, Faculté des Sciences, B.P. 812, Yaounde, Cameroun
autor
  • Université d'Orléans, Mathématiques, B.P. 6759, F-45067 Orléans Cedex 2, France
Bibliografia
  • [1] D. Bekollé, Solutions avec estimations de l'équation des ondes, in: Séminaire Analyse Harmonique 1983-1984, Publ. Math. Orsay, 1985, 113-125.
  • [2] D. Bekollé, Le dual de l'espace des fonctions holomorphes intégrables dans des domaines de Siegel, Ann. Inst. Fourier (Grenoble) 33 (3) (1984), 125-154.
  • [3] D. Bekollé et M. Omporo, Le dual de la classe de Bergman $A^1$ dans la boule de Lie de $ℂ^n$, C. R. Acad. Sci. Paris 311 (1990), 235-238.
  • [4] D. Bekollé and A. Temgoua Kagou, Reproducing properties and $L^p$ estimates for Bergman projections in Siegel domains of type II, submitted.
  • [5] E. Cartan, Sur les domaines bornés homogènes de l'espace de n variables complexes, Abh. Math. Sem. Hamburg 11 (1935), 116-162.
  • [6] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336.
  • [7] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602.
  • [8] S. G. Gindikin, Analysis on homogeneous domains, Russian Math. Surveys 19 (1964), 1-89.
  • [9] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Transl. Math. Monographs 6, Amer. Math. Soc., Providence, 1963.
  • [10] B. Jöricke, Continuity of the Cauchy projection in Hölder norms for classical domains, Math. Nachr. 113 (1983), 227-244.
  • [11] A. Korányi and S. Vági, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25 (1971), 575-648.
  • [12] E. M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups, in: Proc. Intern. Congress of Math. Nice 1, 1970, 173-189.
  • [13] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.
  • [14] S. Vági, Harmonic analysis in Cartan and Siegel domains, in: Studies in Harmonic Analysis, J. M. Ash (ed.), MAA Stud. Math. 13, 1976, 257-309.
  • [15] S. Yan, Duality and differential operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 105 (1992), 171-187.
  • [16] K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, ibid. 81 (1988), 260-278.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv68i1p81bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.