Download PDF - Planar rational compacta
ArticleOriginal scientific text
Title
Planar rational compacta
Authors 1, 1, 1
Affiliations
- Department of Mathematics, University of Patras, 26110 Patras, Greece
Abstract
In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.
Bibliography
- L. E. Feggos, S. D. Iliadis and S. S. Zafiridou, Some families of planar rim-scattered spaces and universality, Houston J. Math. 20 (1994), 1-15.
- S. D. Iliadis, The rim-type of spaces and the property of universality, ibid. 13 (1987), 373-388.
- S. D. Iliadis, Rational spaces and the property of universality, Fund. Math. 131 (1988), 167-184.
- S. D. Iliadis and S. S. Zafiridou, Planar rational compacta and universality, ibid. 141 (1992), 109-118.
- K. Kuratowski, Topology, Vols. I, II, Academic Press, New York, 1966, 1968.
- J. C. Mayer and E. D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Math. 300 (1990).
- J. C. Mayer and E. D. Tymchatyn, Universal rational spaces, Dissertationes Math. 293 (1990).
- G. Nöbeling, Über regulär-eindimensionale Räume, Math. Ann. 104 (1931), 81-91.
- G. T. Whyburn, Topological Analysis, Princeton Univ. Press, Princeton, N.J., 1964.