ArticleOriginal scientific text

Title

Planar rational compacta

Authors 1, 1, 1

Affiliations

  1. Department of Mathematics, University of Patras, 26110 Patras, Greece

Abstract

In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.

Bibliography

  1. L. E. Feggos, S. D. Iliadis and S. S. Zafiridou, Some families of planar rim-scattered spaces and universality, Houston J. Math. 20 (1994), 1-15.
  2. S. D. Iliadis, The rim-type of spaces and the property of universality, ibid. 13 (1987), 373-388.
  3. S. D. Iliadis, Rational spaces and the property of universality, Fund. Math. 131 (1988), 167-184.
  4. S. D. Iliadis and S. S. Zafiridou, Planar rational compacta and universality, ibid. 141 (1992), 109-118.
  5. K. Kuratowski, Topology, Vols. I, II, Academic Press, New York, 1966, 1968.
  6. J. C. Mayer and E. D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Math. 300 (1990).
  7. J. C. Mayer and E. D. Tymchatyn, Universal rational spaces, Dissertationes Math. 293 (1990).
  8. G. Nöbeling, Über regulär-eindimensionale Räume, Math. Ann. 104 (1931), 81-91.
  9. G. T. Whyburn, Topological Analysis, Princeton Univ. Press, Princeton, N.J., 1964.
Pages:
49-54
Main language of publication
English
Received
1994-04-06
Published
1995
Exact and natural sciences