ArticleOriginal scientific text

Title

The Dugundji extension theorem and extension degree

Authors 1

Affiliations

  1. Department of Information, Waseda University, Tokyo, 169 Japan

Keywords

local convexity, extension degree, Graev extension, Dugundji extension theorem, topological linear space

Bibliography

  1. R. F. Arens, Extension of functions on fully normal spaces, Pacific J. Math. 2 (1952), 11-22.
  2. R. F. Arens and J. Eells, Jr., On embedding uniform topological spaces, ibid. 6 (1956), 397-403.
  3. R. H. Bing, Concerning hereditarily indecomposable continua, ibid. 1 (1951), 43-51.
  4. C. R. Borges, Are EC-spaces AE(metrizable)?, Colloq. Math. 62 (1991), 135-143.
  5. R. Cauty, Un espace métrique linéaire qui n'est pas un rétracte absolu, Fund. Math. 146 (1994), 85-99.
  6. C. O. Christenson and W. L. Voxman, Aspects of Topology, Dekker, New York, 1977.
  7. J. Dugundji, An extension of Tietze's Theorem, Pacific J. Math. 1 (1951), 353-367.
  8. J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
  9. K. Eda, Free σ-products and noncommutatively slender groups, J. Algebra 148 (1992), 243-263.
  10. K. Eda and K. Sakai, A factor of singular homology, Tsukuba J. Math. 15 (1991), 351-387.
  11. R. Engelking, General Topology, Heldermann, Berlin, 1989.
  12. M. I. Graev, Free Topological Groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279-324 (in Russian); English transl.: Amer. Math. Soc. Transl. 8, 305-364.
  13. E. Hewitt and K. Ross, Abstract Harmonic Analysis I, Springer, Berlin, 1963.
  14. E. Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789-806.
  15. M. G. Tkachenko, On completeness of free abelian topological groups, Soviet Math. Dokl. 27 (1983), 341-345.
  16. J. van der Bijl and J. van Mill, Linear spaces, absolute retracts, and the compact extension property, Proc. Amer. Math. Soc. 104 (1988), 942-952.
Pages:
25-38
Main language of publication
English
Received
1993-10-08
Accepted
1994-03-15
Published
1995
Exact and natural sciences