ArticleOriginal scientific text

Title

On some class of nearly conformally symmetric manifolds

Authors 1

Affiliations

  1. Institute of Mathematics, Technical University of Szczecin, Al. Piastów 48/49, 70-310 Szczecin, Poland

Bibliography

  1. S. Formella, Geodätische Abbildungen der Riemannschen Mannigfaltigkeiten auf Einsteinsche Mannigfaltigkeiten, Tensor (N.S.) 39 (1982), 141-147.
  2. S. Formella, Geodesic mappings of pseudo-Riemannian manifolds, to appear.
  3. S. Formella, Generalized Einstein manifolds, in: Proc. Winter School Geom. and Phys., Srní, Suppl. Rend. Circ. Mat. Palermo (2) 22 (1989), 49-58.
  4. S. Formella and J. Mikesh, Geodesic mappings of Einstein manifolds, to appear.
  5. E. Z. Gorbatyĭ and D. I. Rozenfeld, On geodesic mappings of Riemannian spaces onto conformally flat Riemannian spaces, Ukrain. Geom. Sb. 12 (1972), 115-124 (in Russian).
  6. J. Mikesh, On geodesic mappings of Einstein spaces, Mat. Zametki 28 (1980), 935-938 (in Russian).
  7. W. Roter, On generalization of conformally symmetric metrics, Tensor (N.S.) 46 (1987), 278-286.
  8. J. A. Schouten, Ricci-Calculus, Springer, 1954.
  9. N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces, Nauka, Moscow 1979 (in Russian).
  10. E. N. Sinyukova, Geodesic mappings of L2 spaces, Izv. Vyssh. Ucheb. Zaved. Mat. 1982 (3), 57-61 (in Russian).
  11. V. S. Sobchuk, On geodesic mappings of generalized Ricci symmetric Riemannian manifolds, preprint, Univ. Chernovtsy, 1981 (in Russian).
  12. P. Venzi, Über konforme und geodätische Abbildungen, Resultate Math. 5 (1982), 184-198.
Pages:
149-164
Main language of publication
English
Received
1991-09-16
Accepted
1992-09-16
Published
1995
Exact and natural sciences