ArticleOriginal scientific text

Title

Radial limits of superharmonic functions in the plane

Authors 1

Affiliations

  1. Department of Pure Mathematics, The Queen's University of Belfast Belfast, BT7 1NN, Northern Ireland

Bibliography

  1. L. V. Ahlfors and M. Heins, Questions of regularity connected with the Phragmén-Lindelöf principle, Ann. of Math. 50 (1949), 341-346.
  2. D. H. Armitage, On the extension of superharmonic functions, J. London Math. Soc. (2) 4 (1971), 215-230.
  3. D. H. Armitage and M. Goldstein, Radial limiting behaviour of harmonic functions in cones, Complex Variables Theory Appl., to appear.
  4. V. S. Azarin, Generalization of a theorem of Hayman, on subharmonic functions in an m-dimensional cone, Amer. Math. Soc. Transl. (2) 80 (1969), 119-138.
  5. F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Z. 61 (1954), 186-199.
  6. M. Brelot, Éléments de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1965.
  7. P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc. 261 (1980), 160-183.
  8. P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc. (2) 28 (1983), 71-82.
  9. L. L. Helms, Introduction to Potential Theory, Wiley, New York, 1969.
  10. W. J. Schneider, On the growth of entire functions along half rays, in: Entire Functions and Related Parts of Analysis, Proc. Sympos. Pure Math. 11, Amer. Math. Soc., Providence, R.I., 1968, 377-385.
  11. M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.
Pages:
245-252
Main language of publication
English
Received
1993-10-15
Published
1994
Exact and natural sciences