ArticleOriginal scientific text
Title
Radial limits of superharmonic functions in the plane
Authors 1
Affiliations
- Department of Pure Mathematics, The Queen's University of Belfast Belfast, BT7 1NN, Northern Ireland
Bibliography
- L. V. Ahlfors and M. Heins, Questions of regularity connected with the Phragmén-Lindelöf principle, Ann. of Math. 50 (1949), 341-346.
- D. H. Armitage, On the extension of superharmonic functions, J. London Math. Soc. (2) 4 (1971), 215-230.
- D. H. Armitage and M. Goldstein, Radial limiting behaviour of harmonic functions in cones, Complex Variables Theory Appl., to appear.
- V. S. Azarin, Generalization of a theorem of Hayman, on subharmonic functions in an m-dimensional cone, Amer. Math. Soc. Transl. (2) 80 (1969), 119-138.
- F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Z. 61 (1954), 186-199.
- M. Brelot, Éléments de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1965.
- P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc. 261 (1980), 160-183.
- P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc. (2) 28 (1983), 71-82.
- L. L. Helms, Introduction to Potential Theory, Wiley, New York, 1969.
- W. J. Schneider, On the growth of entire functions along half rays, in: Entire Functions and Related Parts of Analysis, Proc. Sympos. Pure Math. 11, Amer. Math. Soc., Providence, R.I., 1968, 377-385.
- M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.