ArticleOriginal scientific text
Title
A Sard type theorem for Borel mappings
Authors 1
Affiliations
- Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Abstract
We find a condition for a Borel mapping which implies that the Hausdorff dimension of is less than or equal to m-n for almost all .
Bibliography
- B. Bojarski and P. Hajłasz, in preparation.
- Y. Burago and V. Zalgaller, Geometric Inequalities, Grundlehren Math. Wiss. 285, Springer, 1988.
- S. Eilenberg, On
-measures, Ann. Soc. Polon. Math. 17 (1938), 252-253. - S. Eilenberg and O. Harold, Continua of finite linear measure I, Amer. J. Math. 65 (1943), 137-146.
- H. Federer, Geometric Measure Theory, Springer, 1969.
- P. Hajłasz, A note on weak approximation of minors, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear.
- P. Hajłasz, Sobolev mappings, co-area formula and related topics, preprint.
- T. Jech, Set Theory, Acad. Press, 1978.
- K. Kuratowski, Topology, Vol. 1, Acad. Press, 1966.
- N. Lusin, Sur les ensembles analytiques, Fund. Math. 10 (1927), 1-95.
- N. Lusin et W. Sierpiński, Sur quelques propriétés des ensembles \rm (A), Bull. Acad. Cracovie 4-5A (1918), 35-48.
- P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 227-244.
- J. Milnor, Topology from the Differentiable Viewpoint, The Univ. Press of Virginia, 1965.
- A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883-890.
- S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.