ArticleOriginal scientific text

Title

On positive Rockland operators

Authors 1, 2, 3

Affiliations

  1. IRMAR, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
  2. Department of Mathematics, and Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
  3. Centre for Mathematics and its Applications School of Mathematical Sciences Australian National University Canberra, ACT 0200 Australia

Abstract

Let G be a homogeneous Lie group with a left Haar measure dg and L the action of G as left translations on Lp(G;dg). Further, let H = dL(C) denote a homogeneous operator associated with L. If H is positive and hypoelliptic on L2 we prove that it is closed on each of the Lp-spaces, p ∈ 〈 1,∞〉, and that it generates a semigroup S with a smooth kernel K which, with its derivatives, satisfies Gaussian bounds. The semigroup is holomorphic in the open right half-plane on all the Lp-spaces, p ∈ [1,∞]. Further extensions of these results to nonhomogeneous operators and general representations are also given.

Bibliography

  1. [Agm] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Math. Stud. 2, van Nostrand, Princeton, 1965.
  2. [AMT] P. Auscher, A. McIntosh and Ph. Tchamitchian, Noyau de la chaleur d'opérateurs elliptiques complexes, Math. Research Letters 1 (1994), 37-45.
  3. [BrR1] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 1, 2nd ed., Springer, New York, 1987.
  4. [BrR2] O. Bratteli and D. W. Robinson, Subelliptic operators on Lie groups: variable coefficients, Acta Appl. Math. (1994), to appear.
  5. [BER] R. J. Burns, A. F. M. ter Elst and D. W. Robinson, Lp-regularity of subelliptic operators on Lie groups, J. Operator Theory 30 (1993), to appear.
  6. [Dzi] J. Dziubański, On semigroups generated by subelliptic operators on homogeneous groups, Colloq. Math. 64 (1993), 215-231.
  7. [DHZ] J. Dziubański, W. Hebisch and J. Zienkiewicz, Note on semigroups generated by positive Rockland operators on graded homogeneous groups, Studia Math. 110 (1994), 115-126.
  8. [ElR1] A. F. M. ter Elst and D. W. Robinson, Subcoercivity and subelliptic operators on Lie groups II: The general case, Potential Anal. (1994), to appear.
  9. [ElR2] A. F. M. ter Elst and D. W. Robinson, Subcoercive and subelliptic operators on Lie groups: variable coefficients, Publ. RIMS Kyoto Univ. 29 (1993), 745-801.
  10. [ElR3] A. F. M. ter Elst and D. W. Robinson, Functional analysis of subelliptic operators on Lie groups, J. Operator Theory 30 (1993), to appear.
  11. [ElR4] A. F. M. ter Elst and D. W. Robinson, Weighted strongly elliptic operators on Lie groups, J. Funct. Anal. (1994), to appear.
  12. [FoS] G. B. Folland and Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton University Press, Princeton, 1982.
  13. [Heb] W. Hebisch, Sharp pointwise estimate for the kernels of the semigroup generated by sums of even powers of vector fields on homogeneous groups, Studia Math. 95 (1989), 93-106.
  14. [HeS] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, ibid. 96 (1990), 231-236.
  15. [HeN1] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958.
  16. [HeN2] B. Helffer et J. Nourrigat, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progr. Math. 58, Birkhäuser, Boston, 1985.
  17. [Kat] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss. 132, Springer, Berlin, 1984.
  18. [Mil] K. G. Miller, Parametrices for hypoelliptic operators on step two nilpotent Lie groups, Comm. Partial Differential Equations 5 (1980), 1153-1184.
  19. [NeS] E. Nelson and W. F. Stinespring, Representation of elliptic operators in an enveloping algebra, Amer. J. Math. 81 (1959), 547-560.
  20. [Nir] L. Nirenberg, Remarks on strongly elliptic partial differential operators, Comm. Pure Appl. Math. 8 (1955), 649-675.
  21. [Rob] D. W. Robinson, Elliptic Operators and Lie Groups, Oxford Math. Monographs, Oxford University Press, Oxford, 1991.
  22. [Roc] C. Rockland, Hypoellipticity for the Heisenberg group, Trans. Amer. Math. Soc. 240 (1978), 1-52.
  23. [VSC] N. T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Math. 100, Cambridge University Press, Cambridge, 1992.
Pages:
197-216
Main language of publication
English
Received
1993-09-14
Published
1994
Exact and natural sciences