ArticleOriginal scientific text
Title
Convergence of compound probability measures on topological spaces
Authors 1
Affiliations
- Department of Mathematics, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380, Japan
Keywords
Gaussian transition probabilities, continuous transition probabilities, compound probability measures, equicontinuity
Bibliography
- S. Chevet, Compacité dans l'espace des probabilités de Radon gaussiennes sur un Banach, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 275-278.
- I. Csiszár, Some problems concerning measures on topological spaces and convolutions of measures on topological groups, in: Les Probabilités sur les Structures Algébriques, Clermont-Ferrand, Colloq. Internat. CNRS, Paris, 1969, 75-96.
- I. Csiszár, On the weak* continuity of convolution in a convolution algebra over an arbitrary topological group, Studia Sci. Math. Hungar. 6 (1971), 27-40.
- X. Fernique, Processus linéaires, processus généralisés, Ann. Inst. Fourier (Grenoble) 17 (1) (1967), 1-92.
- P. R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950.
- J. L. Kelley, General Topology, Van Nostrand, New York, 1955.
- J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.
- Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (1956), 157-214.
- L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford University Press, 1973.
- F. Topsοe, Topology and Measure, Lecture Notes in Math. 133, Springer, Berlin, 1970.
- H. Umegaki, Representations and extremal properties of averaging operators and their applications to information channels, J. Math. Anal. Appl. 25 (1969), 41-73.
- N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, Probability Distributions on Banach Spaces, D. Reidel, 1987.