ArticleOriginal scientific text
Title
Equivalent characterizations of Bloch functions
Authors 1
Affiliations
- Department of Mathematics, Huzhou Teachers College, Huzhou, Zhejiang, 313000, P.R. China
Abstract
In this paper we obtain some equivalent characterizations of Bloch functions on general bounded strongly pseudoconvex domains with smooth boundary, which extends the known results in [1, 9, 10].
Bibliography
- S. Axler, The Bergman space, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.
- C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65.
- S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982.
- S. G. Krantz and D. Ma, The Bloch functions on strongly pseudoconvex domains, Indiana Univ. Math. J. 37 (1988), 145-165.
- H. Li, BMO, VMO and Hankel operators on the Bergman space of strongly pseudoconvex domains, J. Funct. Anal. 106 (1992), 375-408.
- H. Li, Hankel operators on the Bergman space of strongly pseudoconvex domains, preprint.
- W. Rudin, Function Theory in the Unit Ball of
, Springer, New York, 1980. - E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, N.J., 1972.
- K. Stroethoff, Besov-type characterisations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), 405-420.
- J. Zhang, Some characterizations of Bloch functions on strongly pseudoconvex domains, Colloq. Math. 63 (1992), 219-232.