ArticleOriginal scientific text

Title

Curvature properties of Cartan hypersurfaces

Authors 1, 2

Affiliations

  1. Department of Mathematics, Agricultural University of Wrocław, Norwida 25, 50-375 Wrocław, Poland
  2. Department of Mathematics, The University of Ankara, The Faculty of Science, 06100 Tandoḡan Ankara, Turkey

Bibliography

  1. A. Adamów and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math. 16 (1983), 39-59.
  2. E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl. 17 (1938), 177-191.
  3. E. Cartan, Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939), 335-367.
  4. T. E. Cecil and P. J. Ryan, Tight and Taut Immersions of Manifolds, Pitman, Boston, 1985.
  5. F. Defever and R. Deszcz, On semi-Riemannian manifolds satisfying the condition R · R = Q(S,R), in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore, 1991, 108-130.
  6. F. Defever and R. Deszcz, A note on geodesic mappings of pseudosymmetric Riemannian manifolds, Colloq. Math. 62 (1991), 313-319.
  7. F. Defever and R. Deszcz, On warped product manifolds satisfying a certain curvature condition, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 69 (1991), 213-236.
  8. F. Defever and R. Deszcz, On Riemannian manifolds satisfying a certain curvature condition imposed on the Weyl curvature tensor, Acta Univ. Palack., in print.
  9. F. Defever, R. Deszcz and M. Prvanović, On warped product manifolds satisfying some curvature condition of pseudosymmetry type, to appear.
  10. F. Defever, R. Deszcz, L. Verstraelen and S. Yaprak, Curvature properties of hypersurfaces of pseudosymmetry type, in: Geometry and Topology of Submanifolds, V, Leuven/Brussels, July 1992, World Sci., Singapore, 1993, 132-146.
  11. J. Deprez, R. Deszcz and L. Verstraelen, Pseudosymmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kählerian manifolds, Ann. Fac. Sci. Toulouse 9 (1988), 183-192.
  12. J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65.
  13. R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053-1065.
  14. R. Deszcz, On conformally flat Riemannian manifold satisfying certain curvature conditions, Tensor (N.S.) 49 (1990), 134-145.
  15. R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudo-symmetry curvature conditions, Colloq. Math. 62 (1991), 103-120.
  16. R. Deszcz, Curvature properties of a certain compact pseudosymmetric manifold, ibid. 65 (1993), 139-147.
  17. R. Deszcz, Pseudosymmetric hypersurfaces in manifolds of constant curvature, to appear.
  18. R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Sér. A 44 (1992), 1-34.
  19. R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322.
  20. R. Deszcz and W. Grycak, On certain curvature conditions on Riemannian manifolds, Colloq. Math. 58 (1990), 259-268.
  21. R. Deszcz and M. Hotloś, On geodesic mappings in pseudosymmetric manifolds, Bull. Inst. Math. Acad. Sinica 16 (1988), 251-262.
  22. R. Deszcz and M. Hotloś, Remarks on Riemannian manifolds satisfying a certain curvature condition imposed on the Ricci tensor, Prace Nauk. Polit. Szczec. 11 (1989), 23-34.
  23. R. Deszcz and L. Verstraelen, Hypersurfaces of semi-Riemannian conformally flat manifolds, in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore, 1991, 131-147.
  24. R. Deszcz, L. Verstraelen and S. Yaprak, Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor, Chinese J. Math., in print.
  25. R. Deszcz, L. Verstraelen and S. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica, in print.
  26. T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970), 145-173.
  27. F. Tricerri and L. Vanhecke, Cartan hypersurfaces and reflections, Nihonkai Math. J. 1 (1990), 203-208.
  28. Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom., 17 (1982), 531-582.
Pages:
91-98
Main language of publication
English
Received
1993-05-31
Accepted
1993-10-08
Published
1994
Exact and natural sciences