ArticleOriginal scientific text

Title

Doubly warped products with harmonic Weyl conformal curvature tensor

Authors 1

Affiliations

  1. Mathematical Institute, Pedagogical University of Rzeszów, Rejtana 16a, 35-959 Rzeszów, Poland

Bibliography

  1. J. K. Beem and T. G. Powell, Geodesic completeness and maximality in Lorentzian warped products, Tensor (N.S.) 39 (1982), 31-36.
  2. A. L. Besse, Einstein Manifolds, Springer, 1987.
  3. R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
  4. M. C. Chaki and B. Gupta, On conformally symmetric spaces, Indian J. Math. 5 (1963), 113-122.
  5. R. Deszcz, L. Verstraelen and L. Vrancken, On the symmetry of warped product space-times, Gen. Relativity Gravitation 23 (1991), 671-681.
  6. P. E. Ehrlich, Metric deformations of Ricci and sectional curvature on compact Riemannian manifolds, Ph.D. dissertation, SUNY, Stony Brook, N.Y., 1974.
  7. A. Gębarowski, Nearly conformally symmetric warped product manifolds, Bull. Inst. Math. Acad. Sinica 20 (1992), 359-377.
  8. M. Hotloś, Some theorems on doubly warped products, Demonstratio Math. 23 (1990), 39-58.
  9. M. Hotloś, Some theorems on Ricci-pseudosymmetric doubly warped products, to appear.
  10. G. I. Kruchkovich, On semi-reducible Riemannian spaces, Dokl. Akad. Nauk SSSR 115 (1957), 862-865 (in Russian).
  11. G. I. Kruchkovich, On some class of Riemannian spaces, Trudy Sem. Vektor. Tenzor. Anal. 11 (1961), 103-128 (in Russian).
  12. W. Roter, On a generalization of conformally symmetric metrics, Tensor (N.S.) 46 (1987), 278-286.
  13. Y. C. Wong, Some Einstein spaces with conformally separable fundamental tensors, Trans. Amer. Math. Soc. 53 (1943), 157-194.
  14. K. Yano, Conformally separable quadratic differential forms, Proc. Imper. Acad. Tokyo 16 (1940), 83-86.
Pages:
73-89
Main language of publication
English
Received
1993-09-16
Published
1994
Exact and natural sciences