Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1994 | 67 | 1 | 33-60
Tytuł artykułu

On convolution operators with small support which are far from being convolution by a bounded measure

Treść / Zawartość
Warianty tytułu
Języki publikacji
Let $CV_p(F)$ be the left convolution operators on $L^p(G)$ with support included in F and $M_p(F)$ denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that $CV_p(F)$, $CV_p(F)/M_p(F)$ and $CV_p(F)/W$ are as big as they can be, namely have $l^∞$ as a quotient, where the ergodic space W contains, and at times is very big relative to $M_p(F)$. Other subspaces of $CV_p(F)$ are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.
Słowa kluczowe
Opis fizyczny
  • Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
  • [BL] Y. Benyamini and P. K. Lin, Norm one multipliers on $L^p(G)$, Ark. Mat. 24 (1986), 159-173.
  • [BE] B. Brainerd and R. E. Edwards, Linear operators which commute with translations. Part I: Representation theorems, J. Austral. Math. Soc. 6 (1966), 289-327.
  • [Ch1] C. Chou, Weakly almost periodic functions and Fourier-Stieltjes algebras of locally compact groups, Trans. Amer. Math. Soc. 274 (1982), 141-157.
  • [Ch2] C. Chou, Topological invariant means on the von Neumann algebra VN(G), ibid. 273 (1982), 207-229.
  • [Co] H. S. Collins, Strict, weighted, and mixed topologies and applications, Adv. in Math. 19 (1976), 207-237.
  • [Cow] M. Cowling, An application of Littlewood-Paley theory in harmonic analysis, Math. Ann. 241 (1979), 83-96.
  • [CF] M. Cowling and J. J. F. Fournier, Inclusions and noninclusion of spaces of convolution operators, Trans. Amer. Math. Soc. 221 (1976), 56-95.
  • [De1] J. Delaporte, Convoluteurs continus et topologie stricte, thèse, Université Lausanne, 1989.
  • [De2] J. Delaporte, Convoluteurs continus et groupes quotients, C. R. Math. Rep. Acad. Sci. Canada 14 (1992), 167-172.
  • [Der] A. Derighetti, A propos des convoluteurs d'un groupe quotient, Bull. Sci. Math. 107 (1983), 3-23.
  • [DU] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
  • [Do] Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1-66.
  • [DR1] C. F. Dunkl and D. E. Ramirez, $L^p$ multipliers on compact groups, preprint.
  • [DR2] C. F. Dunkl and D. E. Ramirez, $C^*$-algebras generated by Fourier-Stieltjes transforms, Trans. Amer. Math. Soc. 164 (1972), 435-441.
  • [EP] R. E. Edwards and J. F. Price, A naively constructive approach to boundedness principles with applications to harmonic analysis, Enseign. Math. 16 (1970), 255-296.
  • [Ey] P. Eymard, Algèbres $A_p$ et convoluteurs de $L^p$, Séminaire Bourbaki, 22e année, 1969/70, no. 367.
  • [Fe] G. Fendler, An $L^p$-version of a theorem of D. A. Raikov, Ann. Inst. Fourier (Grenoble) 35 (1) (1985), 125-135.
  • [FG] A. Figà-Talamanca and G. I. Gaudry, Multipliers and sets of uniqueness of $L^p$, Michigan Math. J. 17 (1970), 179-191.
  • [GI] G. I. Gaudry and I. R. Inglis, Approximation of multipliers, Proc. Amer. Math. Soc. 44 (1974), 381-384.
  • [GMc] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979.
  • [Gr1] E. E. Granirer, On some spaces of linear functionals on the algebras $A_p(G)$ for locally compact groups, Colloq. Math. 52 (1987), 119-132.
  • [Gr2] E. E. Granirer, Geometric and topological properties of certain $w^*$ compact convex subsets of double duals of Banach spaces, which arise from the study of invariant means, Illinois J. Math. 30 (1986), 148-174.
  • [Gr3] E. E. Granirer, On Baire measures on D-topological spaces, Fund. Math. 60 (1967), 1-22.
  • [Gr4] E. E. Granirer, On convolution operators which are far from being convolution by a bounded measure. Expository memoir, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), 187-204.
  • [Ha] R. Haydon, A non-reflexive Grothendieck space that does not contain $l_∞$, Israel J. Math. 40 (1981), 65-73.
  • [Hz1] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (3) (1973), 91-123.
  • [Hz2] C. Herz, Une généralisation de la notion de transformée de Fourier-Stieltjes, ibid. 24 (3) (1974), 145-157.
  • [Hz3] C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82.
  • [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vols. I, II, Springer, 1970.
  • [Ka1] J.-P. Kahane et R. Salem, Sur les ensembles linéaires ne portant pas de pseudomesures, C. R. Acad. Sci. Paris 243 (1956), 1185-1187.
  • [Ka2] J.-P. Kahane, Sur les réarrangements de fonctions de la classe A, Studia Math. 31 (1968), 287-293.
  • [Ka3] J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer, 1970.
  • [Ko] T. W. Körner, A pseudofunction on a Helson set. I, Astérisque 5 (1973), 3-224.
  • [La] R. Larsen, An Introduction to the Theory of Multipliers, Springer, 1971.
  • [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Springer, 1977.
  • [LR] T. S. Liu and A. van Rooij, Invariant means on a locally compact group, Monatsh. Math. 78 (1974), 356-359.
  • [Lo] L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. of Math. 72 (1960), 362-368.
  • [P1] F. Lust-Piquard, Produits tensoriels projectifs d'espaces de Banach faiblement sequentiellement complets, Colloq. Math. 36 (1976), 255-267.
  • [P2] F. Lust-Piquard, Means on $CV_p(G)$-subspaces of $CV_p(G)$ with RNP and Schur property, Ann. Inst. Fourier (Grenoble) 39 (1989), 969-1006.
  • [P3] F. Lust-Piquard, Eléments ergodiques et totalement ergodiques dans $L^∞(Γ)$, Studia Math. 69 (1981), 191-225.
  • [Mc] O. C. McGehee, Helson sets in $T^n$, in: Conference on Harmonic Analysis, College Park, Maryland, 1971, Lecture Notes in Math. 266, Springer, 1972, 229-237.
  • [Me] Y. Meyer, Recent advances in spectral synthesis, ibid., 239-253.
  • [Ne] C. Nebbia, Convolution operators on the group of isometries of a homogeneous tree, Boll. Un. Mat. Ital. C (6) 2 (1983), 277-292.
  • [Pa] A. L. T. Paterson, Amenability, Math. Surveys Monographs 29, Amer. Math. Soc., 1988.
  • [Pi] J. P. Pier, Amenable Locally Compact Groups, Wiley, 1984.
  • [Pr] J. F. Price, Some strict inclusions between spaces of $L^p$-multipliers, Trans. Amer. Math. Soc. 152 (1970), 321-330.
  • [Ro] H. P. Rosenthal, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803-831.
  • [Ru1] W. Rudin, Fourier Analysis on Groups, Wiley, 1960.
  • [Ru2] W. Rudin, Functional Analysis, McGraw-Hill, 1973.
  • [Sa] E. Saab, Some characterizations of weak Radon-Nikodym sets, Proc. Amer. Math. Soc. 86 (1982), 307-311.
  • [S] S. Saeki, Helson sets which disobey spectral synthesis, ibid. 47 (1975), 371-377.
  • [St] E. Stein, On limits of sequences of operators, Ann. of Math. 74 (1961), 140-170.
  • [T] M. Talagrand, Un nouveau C(K) qui possède la propriété de Grothendieck, Israel J. Math. 37 (1980), 181-191.
  • [Wo1] G. S. Woodward, Une classe d'ensembles épars, C. R. Acad. Sci. Paris 274 (1972), 221-223.
  • [Wo2] G. S. Woodward, Invariant means and ergodic sets in Fourier analysis, Pacific J. Math. 54 (1974), 281-299.
  • [Wo3] G. S. Woodward, The generalized almost periodic part of an ergodic function, Studia Math. 50 (1974), 103-116.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.