ArticleOriginal scientific text

Title

On convolution operators with small support which are far from being convolution by a bounded measure

Authors 1

Affiliations

  1. Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2

Abstract

Let CVp(F) be the left convolution operators on Lp(G) with support included in F and Mp(F) denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that CVp(F), CVpFMp(F) and CVpFW are as big as they can be, namely have l as a quotient, where the ergodic space W contains, and at times is very big relative to Mp(F). Other subspaces of CVp(F) are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.

Bibliography

  1. [BL] Y. Benyamini and P. K. Lin, Norm one multipliers on Lp(G), Ark. Mat. 24 (1986), 159-173.
  2. [BE] B. Brainerd and R. E. Edwards, Linear operators which commute with translations. Part I: Representation theorems, J. Austral. Math. Soc. 6 (1966), 289-327.
  3. [Ch1] C. Chou, Weakly almost periodic functions and Fourier-Stieltjes algebras of locally compact groups, Trans. Amer. Math. Soc. 274 (1982), 141-157.
  4. [Ch2] C. Chou, Topological invariant means on the von Neumann algebra VN(G), ibid. 273 (1982), 207-229.
  5. [Co] H. S. Collins, Strict, weighted, and mixed topologies and applications, Adv. in Math. 19 (1976), 207-237.
  6. [Cow] M. Cowling, An application of Littlewood-Paley theory in harmonic analysis, Math. Ann. 241 (1979), 83-96.
  7. [CF] M. Cowling and J. J. F. Fournier, Inclusions and noninclusion of spaces of convolution operators, Trans. Amer. Math. Soc. 221 (1976), 56-95.
  8. [De1] J. Delaporte, Convoluteurs continus et topologie stricte, thèse, Université Lausanne, 1989.
  9. [De2] J. Delaporte, Convoluteurs continus et groupes quotients, C. R. Math. Rep. Acad. Sci. Canada 14 (1992), 167-172.
  10. [Der] A. Derighetti, A propos des convoluteurs d'un groupe quotient, Bull. Sci. Math. 107 (1983), 3-23.
  11. [DU] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
  12. [Do] Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1-66.
  13. [DR1] C. F. Dunkl and D. E. Ramirez, Lp multipliers on compact groups, preprint.
  14. [DR2] C. F. Dunkl and D. E. Ramirez, C-algebras generated by Fourier-Stieltjes transforms, Trans. Amer. Math. Soc. 164 (1972), 435-441.
  15. [EP] R. E. Edwards and J. F. Price, A naively constructive approach to boundedness principles with applications to harmonic analysis, Enseign. Math. 16 (1970), 255-296.
  16. [Ey] P. Eymard, Algèbres Ap et convoluteurs de Lp, Séminaire Bourbaki, 22e année, 1969/70, no. 367.
  17. [Fe] G. Fendler, An Lp-version of a theorem of D. A. Raikov, Ann. Inst. Fourier (Grenoble) 35 (1) (1985), 125-135.
  18. [FG] A. Figà-Talamanca and G. I. Gaudry, Multipliers and sets of uniqueness of Lp, Michigan Math. J. 17 (1970), 179-191.
  19. [GI] G. I. Gaudry and I. R. Inglis, Approximation of multipliers, Proc. Amer. Math. Soc. 44 (1974), 381-384.
  20. [GMc] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979.
  21. [Gr1] E. E. Granirer, On some spaces of linear functionals on the algebras Ap(G) for locally compact groups, Colloq. Math. 52 (1987), 119-132.
  22. [Gr2] E. E. Granirer, Geometric and topological properties of certain w compact convex subsets of double duals of Banach spaces, which arise from the study of invariant means, Illinois J. Math. 30 (1986), 148-174.
  23. [Gr3] E. E. Granirer, On Baire measures on D-topological spaces, Fund. Math. 60 (1967), 1-22.
  24. [Gr4] E. E. Granirer, On convolution operators which are far from being convolution by a bounded measure. Expository memoir, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), 187-204.
  25. [Ha] R. Haydon, A non-reflexive Grothendieck space that does not contain l, Israel J. Math. 40 (1981), 65-73.
  26. [Hz1] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (3) (1973), 91-123.
  27. [Hz2] C. Herz, Une généralisation de la notion de transformée de Fourier-Stieltjes, ibid. 24 (3) (1974), 145-157.
  28. [Hz3] C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82.
  29. [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vols. I, II, Springer, 1970.
  30. [Ka1] J.-P. Kahane et R. Salem, Sur les ensembles linéaires ne portant pas de pseudomesures, C. R. Acad. Sci. Paris 243 (1956), 1185-1187.
  31. [Ka2] J.-P. Kahane, Sur les réarrangements de fonctions de la classe A, Studia Math. 31 (1968), 287-293.
  32. [Ka3] J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer, 1970.
  33. [Ko] T. W. Körner, A pseudofunction on a Helson set. I, Astérisque 5 (1973), 3-224.
  34. [La] R. Larsen, An Introduction to the Theory of Multipliers, Springer, 1971.
  35. [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Springer, 1977.
  36. [LR] T. S. Liu and A. van Rooij, Invariant means on a locally compact group, Monatsh. Math. 78 (1974), 356-359.
  37. [Lo] L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. of Math. 72 (1960), 362-368.
  38. [P1] F. Lust-Piquard, Produits tensoriels projectifs d'espaces de Banach faiblement sequentiellement complets, Colloq. Math. 36 (1976), 255-267.
  39. [P2] F. Lust-Piquard, Means on CVp(G)-subspaces of CVp(G) with RNP and Schur property, Ann. Inst. Fourier (Grenoble) 39 (1989), 969-1006.
  40. [P3] F. Lust-Piquard, Eléments ergodiques et totalement ergodiques dans L(Γ), Studia Math. 69 (1981), 191-225.
  41. [Mc] O. C. McGehee, Helson sets in Tn, in: Conference on Harmonic Analysis, College Park, Maryland, 1971, Lecture Notes in Math. 266, Springer, 1972, 229-237.
  42. [Me] Y. Meyer, Recent advances in spectral synthesis, ibid., 239-253.
  43. [Ne] C. Nebbia, Convolution operators on the group of isometries of a homogeneous tree, Boll. Un. Mat. Ital. C (6) 2 (1983), 277-292.
  44. [Pa] A. L. T. Paterson, Amenability, Math. Surveys Monographs 29, Amer. Math. Soc., 1988.
  45. [Pi] J. P. Pier, Amenable Locally Compact Groups, Wiley, 1984.
  46. [Pr] J. F. Price, Some strict inclusions between spaces of Lp-multipliers, Trans. Amer. Math. Soc. 152 (1970), 321-330.
  47. [Ro] H. P. Rosenthal, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803-831.
  48. [Ru1] W. Rudin, Fourier Analysis on Groups, Wiley, 1960.
  49. [Ru2] W. Rudin, Functional Analysis, McGraw-Hill, 1973.
  50. [Sa] E. Saab, Some characterizations of weak Radon-Nikodym sets, Proc. Amer. Math. Soc. 86 (1982), 307-311.
  51. [S] S. Saeki, Helson sets which disobey spectral synthesis, ibid. 47 (1975), 371-377.
  52. [St] E. Stein, On limits of sequences of operators, Ann. of Math. 74 (1961), 140-170.
  53. [T] M. Talagrand, Un nouveau C(K) qui possède la propriété de Grothendieck, Israel J. Math. 37 (1980), 181-191.
  54. [Wo1] G. S. Woodward, Une classe d'ensembles épars, C. R. Acad. Sci. Paris 274 (1972), 221-223.
  55. [Wo2] G. S. Woodward, Invariant means and ergodic sets in Fourier analysis, Pacific J. Math. 54 (1974), 281-299.
  56. [Wo3] G. S. Woodward, The generalized almost periodic part of an ergodic function, Studia Math. 50 (1974), 103-116.
Pages:
33-60
Main language of publication
English
Received
1993-05-17
Accepted
1993-08-25
Published
1994
Exact and natural sciences