ArticleOriginal scientific text
Title
The support of a function with thin spectrum
Authors 1
Affiliations
- Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Abstract
We prove that if does not contain parallelepipeds of arbitrarily large dimension then for any open, non-empty there exists a constant c > 0 such that for all whose Fourier transform is supported on E. In particular, such functions cannot vanish on any open, non-empty subset of G. Examples of sets which do not contain parallelepipeds of arbitrarily large dimension include all Λ(p) sets.
Bibliography
- A. Bonami, Etude des coefficients de Fourier des fonctions de
, Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 335-402. - J. Fournier, Uniformizable Λ(2) sets and uniform integrability, Colloq. Math. 51 (1987), 119-129.
- K. Hare, Strict-2-associatedness for thin sets, ibid. 56 (1988), 367-381.
- K. Hare, Arithmetic properties of thin sets, Pacific J. Math. 131 (1988), 143-155.
- B. Host et F. Parreau, Sur les mesures dont la transformée de Fourier-Stieltjes ne tend pas vers 0 à l'infini, Colloq. Math. 41 (1979), 285-289.
- G. W. Johnson and G. S. Woodward, On p-Sidon sets, Indiana Univ. Math. J. 24 (1974), 161-167.
- I. Klemes, Seminar notes on the transforms of some singular measures, private communication, 1990.
- N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. 26, Amer. Math. Soc., Providence, R.I., 1940.
- J. Lopez and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975.
- S. Mandelbrojt, Séries de Fourier et classes quasi-analytiques de fonctions, Gauthier-Villars, Paris, 1935.
- I. Miheev, On lacunary series, Math. USSR-Sb. 27 (1975), 481-502; translated from Mat. Sb. 98 (140) (1975), 538-563.
- I. Miheev, Trigonometric series with gaps, Anal. Math. 9 (1983), 43-55.
- W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
- A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge, 1959.