ArticleOriginal scientific text

Title

The support of a function with thin spectrum

Authors 1

Affiliations

  1. Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract

We prove that if EĜ does not contain parallelepipeds of arbitrarily large dimension then for any open, non-empty SG there exists a constant c > 0 such that f1S2cf2 for all fL2(G) whose Fourier transform is supported on E. In particular, such functions cannot vanish on any open, non-empty subset of G. Examples of sets which do not contain parallelepipeds of arbitrarily large dimension include all Λ(p) sets.

Bibliography

  1. A. Bonami, Etude des coefficients de Fourier des fonctions de Lp(G), Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 335-402.
  2. J. Fournier, Uniformizable Λ(2) sets and uniform integrability, Colloq. Math. 51 (1987), 119-129.
  3. K. Hare, Strict-2-associatedness for thin sets, ibid. 56 (1988), 367-381.
  4. K. Hare, Arithmetic properties of thin sets, Pacific J. Math. 131 (1988), 143-155.
  5. B. Host et F. Parreau, Sur les mesures dont la transformée de Fourier-Stieltjes ne tend pas vers 0 à l'infini, Colloq. Math. 41 (1979), 285-289.
  6. G. W. Johnson and G. S. Woodward, On p-Sidon sets, Indiana Univ. Math. J. 24 (1974), 161-167.
  7. I. Klemes, Seminar notes on the transforms of some singular measures, private communication, 1990.
  8. N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. 26, Amer. Math. Soc., Providence, R.I., 1940.
  9. J. Lopez and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975.
  10. S. Mandelbrojt, Séries de Fourier et classes quasi-analytiques de fonctions, Gauthier-Villars, Paris, 1935.
  11. I. Miheev, On lacunary series, Math. USSR-Sb. 27 (1975), 481-502; translated from Mat. Sb. 98 (140) (1975), 538-563.
  12. I. Miheev, Trigonometric series with gaps, Anal. Math. 9 (1983), 43-55.
  13. W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
  14. A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge, 1959.
Pages:
147-154
Main language of publication
English
Received
1993-02-01
Accepted
1993-12-14
Published
1994
Exact and natural sciences