ArticleOriginal scientific text

Title

The Fatou theorem for NA groups - a negative result

Authors 1

Affiliations

  1. Institute of Mathematics, Wrocław University, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Bibliography

  1. [Br] L. R. Bragg, Hypergeometric operator series and related partial differential equations, Trans. Amer. Math. Soc. 143 (1969), 319-336.
  2. [D] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math. 89 (1988), 169-196.
  3. [DH1] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1-38.
  4. [DH2] E. Damek and A. Hulanicki, Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group, Studia Math. 101 (1991), 34-68.
  5. [DH3] E. Damek and A. Hulanicki, Boundaries and the Fatou theorem for subelliptic second order operators on solvable Lie groups, ibid., to appear.
  6. [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.
  7. [G] M. de Guzmán, Differentiation of Integrals in symRn, Lecture Notes in Math. 481, Springer, 1975.
  8. [H1] A. Hulanicki, Subalgebra of L1(G) associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287.
  9. [H2] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101.
  10. [Sch] I. J. Schoenberg, On the Besicovitch-Perron solution of the Kakeya problem, in: Studies in Mathematical Analysis and Related Topics, G. Szegö et al. (eds.), Stanford Univ. Press, 1962, 359-363.
  11. [SW] E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35-54.
Pages:
131-145
Main language of publication
English
Received
1993-12-08
Published
1994
Exact and natural sciences