ArticleOriginal scientific text
Title
Existence and nonexistence of solutions for a model of gravitational interaction of particles, I
Authors 1, 1
Affiliations
- Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 WrocŁaw, Poland
Abstract
We study the existence of stationary and evolution solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles.
Keywords
nonlinear boundary conditions, stationary solutions, global existence of solutions, parabolic-elliptic system
Bibliography
- R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- F. Bavaud, Equilibrium properties of the Vlasov functional: the generalized Poisson-Boltzmann-Emden equation, Rev. Modern Phys. 63 (1991), 129-149.
- M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489-539.
- P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal. 19 (1992), 1121-1136.
- P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Mathematical Institute, University of Wrocław, Report no. 23 (1992), 1-24 .
- P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, preprint, 1993.
- P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math. 66 (1993), 131-145.
- E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143 (1992), 501-525.
- P. Cherrier, Meilleures constantes dans des inégalités relatives aux espaces de Sobolev, Bull. Sci. Math. 108 (1984), 225-262.
- R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1, Springer, Berlin, 1990.
- D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983.
- A. Krzywicki and T. Nadzieja, Some results concerning the Poisson-Boltzmann equation, Zastos. Mat. 21 (1991), 265-272.
- A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107.
- A. Krzywicki and T. Nadzieja, A note on the Poisson-Boltzmann equation, Zastos. Mat. 21 (1993), 591-595.
- O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1988.
- T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 367-398.
- S. Wang, Some nonlinear elliptic equations with subcritical growth and critical behavior, Houston J. Math. 16 (1990), 559-572.
- G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992), 355-391.
- G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Analyse Math. 59 (1992), 251-272.