ArticleOriginal scientific text
Title
Indépendance linéaire et classification topologique des espaces normés
Authors 1
Affiliations
- U.F.R. de Mathématiques Pures et Appliquées, Université Paris VI, 4, Place Jussieu, 75252 Paris Cedex 05, France
Bibliography
- C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975.
- M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313.
- R. Cauty, Caractérisation topologique de l'espace des fonctions dérivables, Fund. Math. 138 (1991), 35-58.
- R. Cauty, Ensembles absorbants pour les classes projectives, ibid., à paraître.
- R. Cauty, Une famille d'espaces préhilbertiens σ-compacts ayant la puissance du continu, Bull. Polish Acad. Sci. 40 (1992), 41-43.
- R. Cauty and T. Dobrowolski, Applying coordinate products to the topological identification of normed spaces, Trans. Amer. Math. Soc. 337 (1993), 625-649.
- D. Curtis, T. Dobrowolski and J. Mogilski, Some applications of the topological characterization of the sigma-compact spaces
and Σ, ibid. 284 (1984), 837-846. - T. Dobrowolski and J. Mogilski, Absorbing sets in the Hilbert cube related to transfinite dimension, Bull. Polish Acad. Sci. 38 (1990), 185-188.
- T. Dobrowolski and J. Mogilski, Problems on topological classification of incomplete metric spaces, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 409-429.
- D. W. Henderson, Z-sets in ANR's, Trans. Amer. Math. Soc. 213 (1975), 205-216.
- S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965.
- C. Kuratowski, Topologie I, 4ème édition, PWN, Warszawa, 1958.
- W. Marciszewski, A pre-Hilbert space without any continuous maps onto its own square, Bull. Polish Acad. Sci. 31 (1983), 393-396.
- J. van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), 173-180.
- R. Pol, An infinite-dimensional pre-Hilbert space not homeomorphic to its own square, ibid. 90 (1984), 450-454.
- J. R. Steel, Analytic sets and Borel isomorphisms, Fund. Math. 108 (1980), 83-88.
- H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of
-manifolds, ibid. 101 (1978), 93-110.