ArticleOriginal scientific text
Title
Compactness properties of the integration mapassociated with a vector measure
Authors 1, 2
Affiliations
- Department of Mathematics, University of Tasmania, Hobart, 7001, Australia
- School of Mathematics, University of New South Wales, Kensington, 2033, Australia
Bibliography
- G. P. Curebra, Operators into
of a vector measure and applications to Banach lattices, Math. Ann. 293 (1992), 317-330. - W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
- J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
- J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
- P. G. Dodds, B. de Pagter and W. J. Ricker, Reflexivity and order properties of scalar-type spectral operators in locally convex spaces, Trans. Amer. Math. Soc. 293 (1986), 355-380.
- I. Kluvánek, Applications of vector measures, in: Contemp. Math. 2, Amer. Math. Soc., 1980, 101-134.
- I. Kluvánek and G. Knowles, Vector Measures and Control Systems, North-Holland, Amsterdam, 1976.
- S. Okada, A tensor product vector integral, in: Lecture Notes in Math. 1089, Springer, Berlin, 1984, 127-145.
- S. Okada, The dual space of
for a vector measure μ, J. Math. Anal. Appl. 177 (1993), 583-599. - S. Okada and W. J. Ricker, Non-weak compactness of the integration map for vector measures, J. Austral. Math. Soc. Ser. A, 54 (1993), 287-303.