ArticleOriginal scientific text

Title

Nonbasic harmonic maps onto convex wedges

Authors 1, 2

Affiliations

  1. Department of Mathematics, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3250, U.S.A.
  2. Department of Mathematics, University of Delaware, Newark, Delaware 19711, U.S.A

Abstract

We construct a nonbasic harmonic mapping of the unit disk onto a convex wedge. This mapping satisfies the partial differential equation ov{fz¯}=afz where a(z) is a nontrivial extreme point of the unit ball of H.

Bibliography

  1. Y. Abu-Muhanna and G. Schober, Harmonic mappings onto convex domains, Canad. J. Math. (6) 32 (1987), 1489-1530.
  2. G. Choquet, Sur un type de transformation analytique généralisant la représenta- tion conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. 69 (1945), 156-165.
  3. J. Cima and A. Livingston, Integral smoothness properties of some harmonic mappings, Complex Variables 11 (1989), 95-110.
  4. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25.
  5. W. Hengartner and G. Schober, On schlicht mappings to domains convex in one direction, Comment. Math. Helv. 45 (1970), 303-314.
  6. W. Hengartner and G. Schober, Harmonic mappings with given dilatation, J. London Math. Soc. (2) 33 (1986), 473-483.
  7. W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
  8. E. Hille, Analytic Function Theory, Vol. II, Ginn, 1962.
  9. H. Kneser, Lösung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 123-124.
  10. P. Koosis, Introduction to Hp Spaces, London Math., Soc. Lecture Note Ser. 40, Cambridge University Press, 1980.
Pages:
9-22
Main language of publication
English
Received
1991-03-19
Accepted
1992-07-08
Published
1993
Exact and natural sciences