ArticleOriginal scientific text

Title

On the disjoint (0,N)-cells property for homogeneous ANR's

Authors 1

Affiliations

  1. Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

A metric space (X,ϱ) satisfies the disjoint (0,n)-cells property provided for each point x ∈ X, any map f of the n-cell Bn into X and for each ε > 0 there exist a point y ∈ X and a map g:BnX such that ϱ(x,y) < ε, wϱ^(f,g)<ε and yg(Bn). It is proved that each homogeneous locally compact ANR of dimension >2 has the disjoint (0,2)-cells property. If dimX = n > 0, X has the disjoint (0,n-1)-cells property and X is a locally compact LCn-1-space then local homologies satisfy Hk(X,X-x)=0 for k < n and H_{n}(X,X-x) ≠ 0.

Keywords

absolute neighborhood retract, generalized manifold, homogeneous space, disjoint cells property, LCn-space

Bibliography

  1. R. H. Bing and K. Borsuk, Some remarks concerning topologically homogeneous spaces, Ann. of Math. 81 (1965), 100-111.
  2. K. Borsuk, Theory of Retracts, PWN-Polish Sci. Publ., Warszawa, 1967.
  3. J. J. Charatonik and T. Maćkowiak, Around Effros' theorem, Trans. Amer. Math. Soc. 298 (1986), 579-602.
  4. R. J. Daverman, Detecting the disjoint disks property, Pacific J. Math. 93 (1981), 277-298.
  5. R. J. Daverman, Decompositions of Manifolds, Academic Press, Orlando, 1986.
  6. P. Krupski, Homogeneity and Cantor manifolds, Proc. Amer. Math. Soc. 109 (1990), 1135-1142.
  7. P. Krupski, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109-118.
  8. J. M. Łysko, On homogeneous ANR-spaces, in: Proc. Internat. Conf. on Geometric Topology, PWN-Polish Sci. Publ., Warszawa, 1980, 305-306.
  9. J. van Mill, Infinite-Dimensional Topology, North-Holland, Amsterdam, 1989.
  10. W. J. R. Mitchell, General position properties of ANR's, Math. Proc. Cambridge Philos. Soc. 92 (1982), 451-466.
  11. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
Pages:
77-84
Main language of publication
English
Received
1993-02-22
Published
1993
Exact and natural sciences