ArticleOriginal scientific text
Title
On the disjoint (0,N)-cells property for homogeneous ANR's
Authors 1
Affiliations
- Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Abstract
A metric space (X,ϱ) satisfies the disjoint (0,n)-cells property provided for each point x ∈ X, any map f of the n-cell into X and for each ε > 0 there exist a point y ∈ X and a map such that ϱ(x,y) < ε, and . It is proved that each homogeneous locally compact ANR of dimension >2 has the disjoint (0,2)-cells property. If dimX = n > 0, X has the disjoint (0,n-1)-cells property and X is a locally compact -space then local homologies satisfy for k < n and H_{n}(X,X-x) ≠ 0.
Keywords
absolute neighborhood retract, generalized manifold, homogeneous space, disjoint cells property, -space
Bibliography
- R. H. Bing and K. Borsuk, Some remarks concerning topologically homogeneous spaces, Ann. of Math. 81 (1965), 100-111.
- K. Borsuk, Theory of Retracts, PWN-Polish Sci. Publ., Warszawa, 1967.
- J. J. Charatonik and T. Maćkowiak, Around Effros' theorem, Trans. Amer. Math. Soc. 298 (1986), 579-602.
- R. J. Daverman, Detecting the disjoint disks property, Pacific J. Math. 93 (1981), 277-298.
- R. J. Daverman, Decompositions of Manifolds, Academic Press, Orlando, 1986.
- P. Krupski, Homogeneity and Cantor manifolds, Proc. Amer. Math. Soc. 109 (1990), 1135-1142.
- P. Krupski, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109-118.
- J. M. Łysko, On homogeneous ANR-spaces, in: Proc. Internat. Conf. on Geometric Topology, PWN-Polish Sci. Publ., Warszawa, 1980, 305-306.
- J. van Mill, Infinite-Dimensional Topology, North-Holland, Amsterdam, 1989.
- W. J. R. Mitchell, General position properties of ANR's, Math. Proc. Cambridge Philos. Soc. 92 (1982), 451-466.
- E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.