Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
[A] H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83-99.
[B] L. Baggett, On functions that are trivial cocycles for a set of irrationals, Proc. Amer. Math. Soc. 104 (1988), 1212-1217.
[Ba] J. R. Baxter, A class of ergodic transformations having simple spectrum, ibid. 27 (1971), 275-279.
P. Gabriel, M. Lemańczyk et P. Liardet, Ensemble d'invariants pour les produits croisés de Anzai, Suppl. Bull. Soc. Math. France 119 (3) (1991), Mém. 47.
[J-P] R. Jones and W. Parry, Compact abelian group extensions of dynamical systems II, Compositio Math. 25 (1972), 135-147.
[J] A. del Junco, Transformations with discrete spectrum are stacking transformations, Canad. J. Math. 28 (1976), 836-839.
[K-S] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (1967), 81-106 (in Russian); English transl.: Russian Math. Surveys 22 (1967), 77-102.
[P] B. J. Pettis, On continuity and openness of homomorphisms in topological groups, Ann. of Math. 52 (1950), 293-308.
[R1] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314.
[R2] E. A. Robinson, Non-abelian extensions have nonsimple spectrum, Compositio Math. 65 (1988), 155-170.
[Ru] D. J. Rudolph, $ℤ^n$ and $ℝ^n$ cocycle extensions and complementary algebras, Ergodic Theory Dynamical Systems 6 (1986), 583-599.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv66i1p63bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.