ArticleOriginal scientific text

Title

Lipschitz continuity of densities of stable semigroups of measures

Authors 1

Affiliations

  1. Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

In this paper we raise the question of regularity of the densities ht of a symmetric stable semigroup {μt} of measures on the homogeneous group N under the mere assumption that the densities exist. (For a criterion of the existence of the densities of such semigroups see [11].)

Bibliography

  1. A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309.
  2. M. Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. 122 (1985), 575-596.
  3. L. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications. Part 1: Basic Theory and Examples, Cambridge University Press, Cambridge, 1990.
  4. M. Duflo, Représentations de semi-groupes de mesures sur un groupe localement compact, Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 225-249.
  5. J. Dziubański and J. Zienkiewicz, Smoothness of densities of semigroups of measures on homogeneous groups, Colloq. Math., to appear.
  6. G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207.
  7. G. B. Folland, Lipschitz classes and Poisson integrals on stratified groups, Studia Math. 66 (1979), 37-55.
  8. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, 1982.
  9. P. Głowacki, Stable semigroups of measures on the Heisenberg group, Studia Math. 79 (1984), 105-138.
  10. P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non- graded homogeneous groups, Invent. Math. 83 (1986), 557-582.
  11. P. Głowacki, The Rockland condition for nondifferential convolution operators, Duke Math. J. 58 (1989), 371-395.
  12. P. Głowacki and W. Hebisch, Pointwise estimates for the densities of stable semigroups of measures, Studia Math. 104 (1993), 243-258.
  13. P. Głowacki and A. Hulanicki, A semi-group of probability measures with non- smooth differentiable densities on a Lie group, Colloq. Math. 51 (1987), 131-139.
  14. B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 4 (8) (1979), 899-958.
  15. A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101.
  16. G. Hunt, Semigroups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293.
  17. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
  18. E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83.
  19. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1975.
  20. K. Yosida, Functional Analysis, Springer, Berlin, 1980.
  21. F. Zo, A note on approximation of the identity, Studia Math. 55 (1976), 111-122.
Pages:
29-47
Main language of publication
English
Received
1993-01-05
Published
1993
Exact and natural sciences