Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In [3], Kinoshita defined the notion of $f^*.p.p.$ and he proved that each compact AR has $f^*.p.p.$ In [4], Yonezawa gave some examples of not locally connected continua with f.p.p., but without $f^*.p.p.$ In general, for each n=1,2,..., there is an n-dimensional continuum $X_n$ with f.p.p., but without $f^*.p.p.$ such that $X_n$ is locally (n-2)-connected (see [4, Addendum]). In this note, we show that for each n-dimensional continuum X which is locally (n-1)-connected, X has f.p.p. if and only if X has $f^*.p.p.$
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
147-150
Opis fizyczny
Daty
wydano
1993
otrzymano
1992-11-23
poprawiono
1993-03-15
Twórcy
autor
- Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higasi-Hiroshima 724, Japan
Bibliografia
- [1] K. Borsuk, Theory of Retracts, Monografie Mat. 44, PWN, Warszawa, 1967.
- [2] H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), 241-249.
- [3] S. Kinoshita, On essential components of the set of fixed points, Osaka J. Math. 4 (1952), 19-22.
- [4] Y. Yonezawa, On f.p.p. and $f^*.p.p.$ of some not locally connected continua, Fund. Math. 139 (1991), 91-98.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv66i1p147bwm