ArticleOriginal scientific text

Title

Three methods for the study of semilinear equations at resonance

Authors 1

Affiliations

  1. Institute of Mathematics, University of Łódź, Banacha 22, 90-238 Łódź, Poland

Abstract

Three methods for the study of the solvability of semilinear equations with noninvertible linear parts are compared: the alternative method, the continuation method of Mawhin and a new perturbation method [22]-[27]. Some extension of the last method and applications to differential equations in Banach spaces are presented.

Bibliography

  1. A. R. Abdullaev and A. B. Burmistrova, On the solvability of boundary value problems at resonance, Differentsial'nye Uravneniya 25 (1989), 2044-2048.
  2. A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Math. Pura Appl. 93 (1973), 231-247.
  3. H. Brézis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa 5 (1978), 225-326.
  4. L. Cesari, Functional analysis, nonlinear differential equations, and the alternative method, in: Nonlinear Functional Analysis and Differential Equations, L. Cesari, R. Kannan and J. D. Schuur (eds.), Dekker, New York, 1976, 1-197.
  5. D. G. de Figueiredo, On the range of nonlinear operators with linear asymptotes which are not invertible, Comment. Math. Univ. Carolinae 15 (1974), 415-428.
  6. K. Deimling, Nonlinear Functional Analysis, Springer, 1985.
  7. P. Drábek, Landesman-Lazer type condition and nonlinearities with linear growth, Czechoslovak Math. J. 40 (1990), 70-87.
  8. P. Drábek, Landesman-Lazer condition for nonlinear problems with jumping nonlinearities, J. Differential Equations, to appear.
  9. S. Fučik, Nonlinear equations with noninvertible linear part, Czechoslovak Math. J. 24 (1974), 259-271.
  10. S. Fučik, Solvability of Nonlinear Equations and Boundary Value Problems, Reidel, Dordrecht, 1980.
  11. R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math. 568, Springer, 1977.
  12. P. Hess, On a theorem by Landesman and Lazer, Indiana Univ. Math. J. 23 (1974), 827-829.
  13. R. Iannacci and M. N. Nkashama, Nonlinear two point boundary value problem at resonance without Landesman-Lazer condition, Proc. Amer. Math. Soc. 106 (1989), 943-952.
  14. R. Iannacci and M. N. Nkashama, Unbounded perturbations of forced second order ordinary differential equations at resonance, J. Differential Equations 69 (1987), 289-309.
  15. R. Iannacci, M. N. Nkashama and J. R. Ward, Nonlinear second order elliptic partial differential equations at resonance, Trans. Amer. Math. Soc. 311 (1989), 710-727.
  16. R. Kannan, Perturbation methods for nonlinear problems at resonance, in: Nonlinear Functional Analysis and Differential Equations, L. Cesari, R. Kannan and J. D. Schuur (eds.), Dekker, New York, 1976, 209-225.
  17. E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623.
  18. N. G. Lloyd, Degree Theory, Cambridge Univ. Press, Cambridge, 1978.
  19. J. Mawhin, Topological degree methods in nonlinear boundary value problems, Regional Conf. Series in Math. 40, Amer. Math. Soc., Providence, R.I., 1979.
  20. J. Mawhin, Boundary value problems for vector second order nonlinear ordinary differential equations, in: Lecture Notes in Math. 703, Springer, 1979, 241-249.
  21. L. C. Piccinini, G. Stampacchia and G. Vidossich, Ordinary Differential Equations in n, Appl. Math. Sci. 39, Springer, 1984.
  22. B. Przeradzki, An abstract version of the resonance theorem, Ann. Polon. Math. 53 (1991), 35-43.
  23. B. Przeradzki, Operator equations at resonance with unbounded nonlinearities, preprint.
  24. B. Przeradzki, A new continuation method for the study of nonlinear equations at resonance, J. Math. Anal. Appl., to appear.
  25. B. Przeradzki, A note on solutions of semilinear equations at resonance in a cone, Ann. Polon. Math. 58 (1993), 95-103.
  26. B. Przeradzki, The solvability of nonlinear equations with noninvertible linear part, Acta Univ. Lodzensis, habilitation thesis.
  27. B. Przeradzki, Nonlinear boundary value problems at resonance for differential equations in Banach spaces, preprint.
  28. B. Ruf, Multiplicity results for nonlinear elliptic equations, in: Nonlinear Analysis, Function Spaces and Applications, Vol. 3 (Litomyšl 1986), Teubner-Texte zur Math. 93, Teubner, Leipzig, 1986, 109-138.
  29. J. Santanilla, Existence of nonnegative solutions of a semilinear equations at resonance with linear growth, Proc. Amer. Math. Soc. 105 (1989), 963-971.
  30. M. Schechter, J. Shapiro and M. Snow, Solution of the nonlinear problem Au=Nu in a Banach space, Trans. Amer. Math. Soc. 241 (1978), 69-78.
  31. S. A. Williams, A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem, J. Differential Equations 8 (1970), 580-586.
  32. S. A. Williams, A connection between the Cesari and Leray-Schauder methods, Michigan Math. J. 15 (1968), 441-448.
Pages:
109-12
Main language of publication
English
Received
1993-03-08
Published
1993
Exact and natural sciences