ArticleOriginal scientific text
Title
Bounds for Chern classes of semistable vector bundles on complex projective spaces
Authors 1
Affiliations
- Institute of Theoretical and Applied Computer Science, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
Abstract
This work concerns bounds for Chern classes of holomorphic semistable and stable vector bundles on . Non-negative polynomials in Chern classes are constructed for 4-vector bundles on and a generalization of the presented method to r-bundles on is given. At the end of this paper the construction of bundles from complete intersection is introduced to see how rough the estimates we obtain are.
Bibliography
- G. Elencwajg and O. Forster, Bounding cohomology groups of vector bundles on
, Math. Ann. 246 (1980), 251-270. - H. J. Hoppe, Generischer Spaltungstyp und zweite Chernklasse stabiler Vektorraumbündel vom Rang 4 auf
, Math. Z. 187 (1984), 345-360. - K. Jaczewski, M. Szurek and J. Wiśniewski, Geometry of the Tango bundle, in: Proc. Conf. Algebraic Geometry, Berlin 1985, Teubner-Texte Math. 92, Teubner, 1986, 177-185.
- M. Maruyama, The theorem of Grauert-Mülich-Spindler, Math. Ann. 255 (1981), 317-333.
- C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces, Progr. Math. 3, Birkhäuser, 1980.
- M. Schneider, Chernklassen semi-stabiler Vektorraumbündel vom Rang 3 auf dem komplex-projektiven Raum, J. Reine Angew. Math. 315 (1980), 211-220.