ArticleOriginal scientific text

Title

Bounds for Chern classes of semistable vector bundles on complex projective spaces

Authors 1

Affiliations

  1. Institute of Theoretical and Applied Computer Science, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland

Abstract

This work concerns bounds for Chern classes of holomorphic semistable and stable vector bundles on n. Non-negative polynomials in Chern classes are constructed for 4-vector bundles on 4 and a generalization of the presented method to r-bundles on n is given. At the end of this paper the construction of bundles from complete intersection is introduced to see how rough the estimates we obtain are.

Bibliography

  1. G. Elencwajg and O. Forster, Bounding cohomology groups of vector bundles on n, Math. Ann. 246 (1980), 251-270.
  2. H. J. Hoppe, Generischer Spaltungstyp und zweite Chernklasse stabiler Vektorraumbündel vom Rang 4 auf 4, Math. Z. 187 (1984), 345-360.
  3. K. Jaczewski, M. Szurek and J. Wiśniewski, Geometry of the Tango bundle, in: Proc. Conf. Algebraic Geometry, Berlin 1985, Teubner-Texte Math. 92, Teubner, 1986, 177-185.
  4. M. Maruyama, The theorem of Grauert-Mülich-Spindler, Math. Ann. 255 (1981), 317-333.
  5. C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces, Progr. Math. 3, Birkhäuser, 1980.
  6. M. Schneider, Chernklassen semi-stabiler Vektorraumbündel vom Rang 3 auf dem komplex-projektiven Raum, J. Reine Angew. Math. 315 (1980), 211-220.
Pages:
277-290
Main language of publication
English
Received
1992-05-28
Accepted
1993-02-16
Published
1993
Exact and natural sciences