ArticleOriginal scientific text
Title
Multiplier theorem on generalized Heisenberg groups
Authors 1
Affiliations
- Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliography
- M. Christ,
bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73-81. - J. Cygan, Heat kernels for class 2 nilpotent groups, Studia Math. 64 (1979), 227-238.
- G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, 1982.
- B. Gaveau, Principe de moindre action, propagation de la chaleur et estimations sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), 95-153.
- W. Hebisch, A multiplier theorem for Schrödinger operators, Colloq. Math. 60/61 (1990), 659-664.
- --, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263-275.
- A. Hulanicki, Subalgebra of
associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. - --, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), 165-173.
- A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, ibid. 80 (1984), 235-244.
- G. Mauceri and S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154.
- H. P. McKean, -Δ plus a bad potential, J. Math. Phys. 18 (1977), 1277-1279.
- D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl., to appear.
- J. Randall, The heat kernel for generalized Heisenberg groups, to appear.