ArticleOriginal scientific text
Title
Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property
Authors 1, 2, 1
Affiliations
- Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113, U.S.A.
- Department of Mathematics, Lublin Technical University, 20-618 Lublin, Poland
Keywords
convergence of iterates, uniform Opial property, asymptotically nonexpansive mapping
Bibliography
- J.-B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A 280 (1975), 1511-1514.
- J.-B. Baillon and R. E. Bruck, Ergodic theorems and the asymptotic behavior of contraction semigroups, preprint.
- H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
- R. E. Bruck, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set, Israel J. Math. 29 (1978), 1-16.
- R. E. Bruck, Asymptotic behavior of nonexpansive mappings, in: Contemp. Math. 18, Amer. Math. Soc., 1983, 1-47.
- J. M. Dye, T. Kuczumow, P.-K. Lin and S. Reich, Random products of nonexpansive mappings in spaces with the Opial property, ibid. 144, 1993, to appear.
- M. Edelstein and R. C. O'Brien, Nonexpansive mappings, asymptotic regularity, and successive approximations, J. London Math. Soc. (2) 1 (1978), 547-554.
- K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- K. Goebel and T. Kuczumow, Irregular convex sets with the fixed point property for nonexpansive mappings, Colloq. Math. 40 (1978), 259-264.
- J. Górnicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Comment. Math. Univ. Carolinae 30 (1989), 249-252.
- J. Górnicki, Nonlinear ergodic theorems for asymptotically nonexpansive mappings in Banach spaces satisfying Opial's condition, J. Math. Anal. Appl. 161 (1991), 440-446.
- J. P. Gossez and E. Lami-Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-575.
- S. Ishikawa, Fixed points and iterations of nonexpansive mappings in Banach space, Proc. Amer. Math. Soc. 5 (1976), 65-71.
- W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339-346.
- T. Kuczumow, Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property, Proc. Amer. Math. Soc. 93 (1985), 430-432.
- T. Kuczumow and S. Reich, Opial's property and James' quasi-reflexive spaces, preprint.
- C. Lennard, A new convexity property that implies a fixed point property for
, Studia Math. 100 (1991), 95-108. - T. C. Lim, Asymptotic center and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), 135-143.
- H. Oka, Nonlinear ergodic theorems for commutative semigroups of asymptotically nonexpansive mappings, Nonlinear Anal. 18 (1992), 619-635.
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- S. Prus, Banach spaces with the uniform Opial property, Nonlinear Anal. 18 (1992), 697-704.
- S. Reich, Nonlinear evolution equations and nonlinear ergodic theorems, ibid. 1 (1976/77), 319-330.
- S. Reich, Almost convergence and nonlinear ergodic theorems, J. Approx. Theory 24 (1978), 269-272.
- S. Reich, A note on the mean ergodic theorem for nonlinear semigroups, J. Math. Anal. Appl. 91 (1983), 547-551.
- J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, ibid. 158 (1991), 407-413.
- K.-K. Tan and H.-K. Xu, A nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 45 (1992), 25-36.
- D. Tingley, An asymptotically nonexpansive commutative semigroup with no fixed points, Proc. Amer. Math. Soc. 97 (1986), 107-113.
- H.-K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), 1139-1146.