ArticleOriginal scientific text

Title

Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property

Authors 1, 2, 1

Affiliations

  1. Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113, U.S.A.
  2. Department of Mathematics, Lublin Technical University, 20-618 Lublin, Poland

Keywords

convergence of iterates, uniform Opial property, asymptotically nonexpansive mapping

Bibliography

  1. J.-B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A 280 (1975), 1511-1514.
  2. J.-B. Baillon and R. E. Bruck, Ergodic theorems and the asymptotic behavior of contraction semigroups, preprint.
  3. H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
  4. R. E. Bruck, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set, Israel J. Math. 29 (1978), 1-16.
  5. R. E. Bruck, Asymptotic behavior of nonexpansive mappings, in: Contemp. Math. 18, Amer. Math. Soc., 1983, 1-47.
  6. J. M. Dye, T. Kuczumow, P.-K. Lin and S. Reich, Random products of nonexpansive mappings in spaces with the Opial property, ibid. 144, 1993, to appear.
  7. M. Edelstein and R. C. O'Brien, Nonexpansive mappings, asymptotic regularity, and successive approximations, J. London Math. Soc. (2) 1 (1978), 547-554.
  8. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
  9. K. Goebel and T. Kuczumow, Irregular convex sets with the fixed point property for nonexpansive mappings, Colloq. Math. 40 (1978), 259-264.
  10. J. Górnicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Comment. Math. Univ. Carolinae 30 (1989), 249-252.
  11. J. Górnicki, Nonlinear ergodic theorems for asymptotically nonexpansive mappings in Banach spaces satisfying Opial's condition, J. Math. Anal. Appl. 161 (1991), 440-446.
  12. J. P. Gossez and E. Lami-Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-575.
  13. S. Ishikawa, Fixed points and iterations of nonexpansive mappings in Banach space, Proc. Amer. Math. Soc. 5 (1976), 65-71.
  14. W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339-346.
  15. T. Kuczumow, Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property, Proc. Amer. Math. Soc. 93 (1985), 430-432.
  16. T. Kuczumow and S. Reich, Opial's property and James' quasi-reflexive spaces, preprint.
  17. C. Lennard, A new convexity property that implies a fixed point property for L1, Studia Math. 100 (1991), 95-108.
  18. T. C. Lim, Asymptotic center and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), 135-143.
  19. H. Oka, Nonlinear ergodic theorems for commutative semigroups of asymptotically nonexpansive mappings, Nonlinear Anal. 18 (1992), 619-635.
  20. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
  21. S. Prus, Banach spaces with the uniform Opial property, Nonlinear Anal. 18 (1992), 697-704.
  22. S. Reich, Nonlinear evolution equations and nonlinear ergodic theorems, ibid. 1 (1976/77), 319-330.
  23. S. Reich, Almost convergence and nonlinear ergodic theorems, J. Approx. Theory 24 (1978), 269-272.
  24. S. Reich, A note on the mean ergodic theorem for nonlinear semigroups, J. Math. Anal. Appl. 91 (1983), 547-551.
  25. J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, ibid. 158 (1991), 407-413.
  26. K.-K. Tan and H.-K. Xu, A nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 45 (1992), 25-36.
  27. D. Tingley, An asymptotically nonexpansive commutative semigroup with no fixed points, Proc. Amer. Math. Soc. 97 (1986), 107-113.
  28. H.-K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), 1139-1146.
Pages:
169-179
Main language of publication
English
Received
1992-08-05
Published
1993
Exact and natural sciences