ArticleOriginal scientific text
Title
On the spectrum of the sum of generators of a finitely generated group, II
Authors 1, 2, 3
Affiliations
- Institut de Mathématiques, Université de Genève, 2-4 Rue Du Lièvre, 1211 Genève 24, Switzerland
- Department of Mathematics, University of Newcastle, Rankin Drive, Newcastle, New South Wales 2308, Australia
- Institut de Mathématiques, Université de Neuchâtel, Chantemerle 20, 2007 Neuchâtel, Switzerland
Bibliography
- [AkO] C. A. Akemann and P. A. Ostrand, Computing norms in group C*-algebras, Amer. J. Math. 98 (1976), 1015-1047.
- [Ber] S. K. Berberian, Trace and the convex hull of the spectrum in a von Neumann algebra of finite class, Proc. Amer. Math. Soc. 23 (1969), 211-212.
- [BeC] C. Berg and J. P. R. Christensen, On the relation between amenability of locally compact groups and the norms of convolution operators, Math. Ann. 208 (1974), 149-153.
- [Bro] L. Brown, Lidskii's theorem in the type II case, in: Geometric Methods in Operator Algebras, H. Araki and E. G. Effros (eds.), Pitman Res. Notes in Math. Ser. 123, Longman, 1986, 1-35.
- [Day] M. M. Day, Convolutions, means and spectra, Illinois J. Math. 8 (1964), 100-111.
- [DeG] Y. Derriennic et Y. Guivarc'h, Théorème de renouvellement pour les groupes non moyennables, C. R. Acad. Sci. Paris 277 (1973), 613-615.
- [DuS] N. Dunford and J. T. Schwartz, Linear Operators, Interscience, 1958.
- [Fac] T. Fack, Sur la notion de valeur caractéristique, J. Operator Theory 7 (1982), 307-333.
- [Far] J. Faraut, Moyennabilité et normes d'opérateurs de convolution, in: Analyse harmonique sur les groupes de Lie (Sém. Nancy-Strasbourg 1973-75), Lecture Notes in Math. 497, Springer, 1975, 153-163.
- [For] E. Formanek, A problem of Herstein on group rings, Canad. Math. Bull. 17 (1974), 201-202.
- [Haa] U. Haagerup, An example of a non-nuclear C*-algebra which has the metric approximation property, Invent. Math. 50 (1979), 279-293.
- [Har] F. Harary, Graph Theory, Addison-Wesley, 1972.
- [dHa] P. de la Harpe, Groupes hyperboliques, algèbres d'opérateurs et un théorème de Jolissaint, C. R. Acad. Sci. Paris (Sér. I) 307 (1988), 771-774.
- [HRV] P. de la Harpe, A. G. Robertson and A. Valette, On the spectrum of the sum of generators of a finitely generated group, Israel J. Math., to appear.
- [HaV] P. de la Harpe et A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175 (1989).
- [Jol] P. Jolissaint, Rapidly decreasing functions in reduced C*-algebras of groups, Trans. Amer. Math. Soc. 317 (1990), 167-196.
- [JoV] P. Jolissaint et A. Valette, Normes de Sobolev et convoluteurs bornés sur
, Ann. Inst. Fourier (Grenoble) 41 (1991), 797-822. - [KaW] M. A. Kaashoek and T. T. West, Locally compact monothetic semi-algebras, Proc. London Math. Soc. 18 (1968), 428-438.
- [KaR] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras I-II, Academic Press, 1983-1986.
- [Kas] G. G. Kasparov, Lorentz groups: K-theory of unitary representations and crossed products, Dokl. Akad. Nauk SSSR 275 (1984), 541-545 (in Russian).
- [Ke1] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354.
- [Ke2] H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146-156.
- [MoW] B. Mohar and W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989), 209-234.
- [Ped] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press, 1979.
- [PiV] M. Pimsner and D. Voiculescu, K-groups of reduced crossed products by free groups, J. Operator Theory 8 (1982), 131-156.
- [RiN] F. Riesz et B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Gauthier-Villars, Paris 1955.
- [Ros] J. M. Rosenblatt, Invariant measures and growth conditions, Trans. Amer. Math. Soc. 193 (1974), 33-53.
- [Sch] H. H. Schaefer, Topological Vector Spaces, Graduate Texts in Math. 3, Springer, 1971.
- [Str] S. P. Strunkov, On the spectrum of sums of generators of a finite group, Math. USSR-Izv. 37 (1991), 461-463.
- [Val] A. Valette, Minimal projections, integrable representations and property (T), Arch. Math. (Basel) 43 (1984), 397-406.
- [Woe] W. Woess, A short computation of the norms of free convolution operators, Proc. Amer. Math. Soc. 96 (1986), 167-170.