ArticleOriginal scientific text
Title
Some properties of the Pisier-Zu interpolation spaces
Authors 1
Affiliations
- C.N.R., B.P. 1346 R.P., Rabat, Morocco
Abstract
For a closed subset I of the interval [0,1] we let A(I) = [v_1(I),C(I)]_{(1/2)2}. We show that A(I) is isometric to a 1-complemented subspace of A(0,1), and that the Szlenk index of A(I) is larger than the Cantor index of I. We also investigate, for ordinals η < ω_1, the bases structures of A(η), A*(η), and [the isometric predual of A(η)]. All the results of this paper extend, with obvious changes in the proofs, to the interpolation spaces .
Bibliography
- [BL] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, 1976.
- [B] J. Bourgain, On convergent sequences of continuous functions, Bull. Soc. Math. Belgique 32 (1980), 235-249.
- [E] G. A. Edgar, A long James space, in: Lecture Notes in Math. 794, Springer, 1980, 31-37.
- [JZ] K. John and V. Zizler, Smoothness and its equivalent in weakly compactly generated Banach spaces, J. Funct. Anal. 15 (1974), 1-15.
- [P] G. Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de
, C. R. Acad. Sci. Paris 277 (1973), 991-994. - [PX] G. Pisier and Q. Xu, Random series in the real interpolation spaces between the spaces
, preprint. - [S] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61.
- [X] Q. Xu, Espaces d'interpolation réels entre les espaces
: Propriétés géométriques et applications probabilistes, preprint.