ArticleOriginal scientific text

Title

Some properties of the Pisier-Zu interpolation spaces

Authors 1

Affiliations

  1. C.N.R., B.P. 1346 R.P., Rabat, Morocco

Abstract

For a closed subset I of the interval [0,1] we let A(I) = [v_1(I),C(I)]_{(1/2)2}. We show that A(I) is isometric to a 1-complemented subspace of A(0,1), and that the Szlenk index of A(I) is larger than the Cantor index of I. We also investigate, for ordinals η < ω_1, the bases structures of A(η), A*(η), and A(η) [the isometric predual of A(η)]. All the results of this paper extend, with obvious changes in the proofs, to the interpolation spaces [v1(I),C(I)]θq.

Bibliography

  1. [BL] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, 1976.
  2. [B] J. Bourgain, On convergent sequences of continuous functions, Bull. Soc. Math. Belgique 32 (1980), 235-249.
  3. [E] G. A. Edgar, A long James space, in: Lecture Notes in Math. 794, Springer, 1980, 31-37.
  4. [JZ] K. John and V. Zizler, Smoothness and its equivalent in weakly compactly generated Banach spaces, J. Funct. Anal. 15 (1974), 1-15.
  5. [P] G. Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de ln1, C. R. Acad. Sci. Paris 277 (1973), 991-994.
  6. [PX] G. Pisier and Q. Xu, Random series in the real interpolation spaces between the spaces vp, preprint.
  7. [S] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61.
  8. [X] Q. Xu, Espaces d'interpolation réels entre les espaces vp: Propriétés géométriques et applications probabilistes, preprint.
Pages:
43-50
Main language of publication
English
Received
1992-08-05
Published
1993
Exact and natural sciences