ArticleOriginal scientific text

Title

The space of Whitney levels is homeomorphic to l2

Authors 1

Affiliations

  1. Instituto de Matemáticas, Area de la Investigación Científica, Circuito Exterior, Ciudad Universitaria C.P. 04510 México, D.F., México

Bibliography

  1. W. J. Charatonik, A metric on hyperspaces defined by Whitney maps, Proc. Amer. Math. Soc. 94 (1985), 535-538.
  2. D. W. Curtis, Application of a selection theorem to hyperspace contractibility, Canad. J. Math. 37 (1985), 747-759.
  3. J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
  4. J. Dugundji, Topology, Allyn and Bacon, 1966.
  5. C. Eberhart and S. B. Nadler, The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. 19 (1971), 1027-1034.
  6. A. Illanes, Spaces of Whitney maps, Pacific J. Math. 139 (1989), 67-77.
  7. A. Illanes, The space of Whitney levels, Topology Appl. 40 (1991), 157-169.
  8. A. Illanes, The space of Whitney decompositions, Ann. Inst. Mat. Univ. Autónoma México 28 (1988), 47-61.
  9. S. B. Nadler, Hyperspaces of Sets, Dekker, 1978.
  10. H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.
  11. L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469.
  12. S. Willard, General Topology, Addison-Wesley, 1970.
Pages:
1-11
Main language of publication
English
Received
1989-08-28
Accepted
1991-08-27
Published
1993
Exact and natural sciences