ArticleOriginal scientific textThe space of Whitney levels is homeomorphic to
Title
The space of Whitney levels is homeomorphic to
Authors 1
Affiliations
- Instituto de Matemáticas, Area de la Investigación Científica, Circuito Exterior, Ciudad Universitaria C.P. 04510 México, D.F., México
Bibliography
- W. J. Charatonik, A metric on hyperspaces defined by Whitney maps, Proc. Amer. Math. Soc. 94 (1985), 535-538.
- D. W. Curtis, Application of a selection theorem to hyperspace contractibility, Canad. J. Math. 37 (1985), 747-759.
- J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
- J. Dugundji, Topology, Allyn and Bacon, 1966.
- C. Eberhart and S. B. Nadler, The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. 19 (1971), 1027-1034.
- A. Illanes, Spaces of Whitney maps, Pacific J. Math. 139 (1989), 67-77.
- A. Illanes, The space of Whitney levels, Topology Appl. 40 (1991), 157-169.
- A. Illanes, The space of Whitney decompositions, Ann. Inst. Mat. Univ. Autónoma México 28 (1988), 47-61.
- S. B. Nadler, Hyperspaces of Sets, Dekker, 1978.
- H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.
- L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469.
- S. Willard, General Topology, Addison-Wesley, 1970.