ArticleOriginal scientific text

Title

A theorem of O'Nan for finite linear spaces

Authors 1

Affiliations

  1. Mathematisches Seminar, Universität Kiel, Ludewig-Meyn-Str. 4, D-2300 Kiel 1, Germany

Bibliography

  1. F. Buekenhout, A. Delandtsheer, and J. Doyen, Finite linear spaces with flag-transitive groups, J. Combin. Theory Ser. A 49 (1988), 268-293.
  2. A. R. Camina, Permutation groups of even degree whose 2-point stabilisers are isomorphic cyclic 2-groups, Math. Z. 165 (1979), 239-242.
  3. A. R. Camina, Groups acting flag-transitively on designs, Arch. Math. (Basel) 32 (1979), 424-430.
  4. P. Dembowski, Finite Geometries, Springer, Berlin 1968.
  5. W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 771-1029.
  6. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
  7. D. Gorenstein, Finite Groups, Harper & Row, New York 1968.
  8. H. Kurzweil, Endliche Gruppen, Springer, Berlin 1977.
  9. M. O'Nan, A characterization of Ln(q) as a permutation group, Math. Z. 127 (1972), 301-314.
  10. M. O'Nan, Normal structure of the one-point stabilizer of a doubly-transitive permutation group. I, Trans. Amer. Math. Soc. 214 (1975), 1-42.
  11. T. G. Ostrom and A. Wagner, On projective and affine planes with transitive collineation groups, Math. Z. 71 (1959), 186-199.
  12. H. Wielandt, Finite Permutation Groups, Academic Press, New York 1964.
  13. P.-H. Zieschang, Über eine Klasse von Permutationsgruppen, Dissertation, Univ. Kiel, 1983.
  14. P.-H. Zieschang, Fahnentransitive Automorphismengruppen von Blockplänen, Geom. Dedicata 18 (1985), 173-180.
Pages:
13-24
Main language of publication
English
Received
1992-04-09
Published
1993
Exact and natural sciences