ArticleOriginal scientific text

Title

Curvature properties of certain compact pseudosymmetric manifolds

Authors 1

Affiliations

  1. Department of Mathematics, Agricultural University of Wrocław, C. Norwida 25, 50-375 Wrocław, Poland

Bibliography

  1. A. Adamów and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math. 16 (1983), 39-59.
  2. A. L. Besse, Einstein Manifolds, Springer, Berlin 1987.
  3. R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
  4. F. Defever and R. Deszcz, On semi-Riemannian manifolds satisfying the condition R·R = Q(S,R), in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore 1991, 108-130.
  5. F. Defever and R. Deszcz, A note on geodesic mappings of pseudosymmetric Riemannian manifolds, Colloq. Math. 62 (1991), 313-319.
  6. F. Defever and R. Deszcz, On warped product manifolds satisfying a certain curvature condition, Atti Acad. Peloritana Cl. Sci. Fis. Mat. Natur., in print.
  7. F. Defever and R. Deszcz, On Riemannian manifolds satisfying a certain curvature condition imposed on the Weyl curvature tensor, Acta Univ. Palackiensis, in print.
  8. J. Deprez, R. Deszcz and L. Verstraelen, Pseudosymmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kählerian manifolds, Ann. Fac. Sci. Toulouse 9 (1988), 183-192.
  9. J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65.
  10. R. Deszcz, Notes on totally umbilical submanifolds, in: Geometry and Topology of Submanifolds, Luminy, May 1987, World Sci., Singapore 1989, 89-97.
  11. R. Deszcz, Examples of four-dimensional Riemannian manifolds satisfying some pseudosymmetry curvature conditions, in: Geometry and Topology of Submanifolds, II, Avignon, May 1988, World Sci., Singapore 1990, 134-143.
  12. R. Deszcz, On conformally flat Riemannian manifold satisfying certain curvature conditions, Tensor (N.S.) 49 (1990), 134-145.
  13. R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudo-symmetry curvature conditions, Colloq. Math. 62 (1991), 103-120.
  14. R. Deszcz, Pseudosymmetry curvature conditions imposed on the shape operators of hypersurfaces in the affine space, Results in Math. 20 (1991), 600-621.
  15. R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322.
  16. R. Deszcz and W. Grycak, On manifolds satisfying some curvature conditions, Colloq. Math. 57 (1989), 89-92.
  17. R. Deszcz and W. Grycak, On certain curvature conditions on Riemannian manifolds, ibid. 58 (1990), 259-268.
  18. R. Deszcz and M. Hotloś, On geodesic mappings in pseudosymmetric manifolds, Bull. Inst. Math. Acad. Sinica 16 (1988), 251-262.
  19. R. Deszcz and L. Verstraelen, Hypersurfaces of semi-Riemannian conformally flat manifolds, in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore 1991, 131-147.
  20. R. Deszcz, L. Verstraelen and L. Vrancken, On the symmetry of warped product spacetimes, Gen. Rel. Grav. 23 (1991), 671-681.
  21. G. I. Kruchkovich, On semi-reducible Riemannian spaces, Dokl. Akad. Nauk SSSR 115 (1957), 862-865 (in Russian).
  22. J. Mikesh, Geodesic mappings of special Riemannian spaces, in: Topics in Differential Geometry (Hajdoszoboszló 1984), Colloq. Math. Soc. János Bolyai 46, Vol. II, North-Holland, Amsterdam 1988, 793-813.
  23. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340.
  24. Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom. 17 (1982), 531-582.
Pages:
139-147
Main language of publication
English
Received
1992-02-15
Accepted
1993-01-13
Published
1993
Exact and natural sciences