ArticleOriginal scientific text

Title

Tame Lp-multipliers

Authors 1

Affiliations

  1. Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract

We call an Lp-multiplier m tame if for each complex homomorphism χ acting on the space of Lp multipliers there is some γ0Γ and |a| ≤ 1 such that χ(γm)=am(γ0γ) for all γ ∈ Γ. Examples of tame multipliers include tame measures and one-sided Riesz products. Tame multipliers show an interesting similarity to measures. Indeed we show that the only tame idempotent multipliers are measures. We obtain quantitative estimates on the size of Lp-improving tame multipliers which are similar to those obtained for measures, but are false for non-tame multipliers. One-sided Riesz products are seen to play a similar role in the study of tame multipliers as Riesz products do in the study of measures.

Bibliography

  1. G. Brown, Riesz products and generalized characters, Proc. London Math. Soc. 30 (1975), 209-238.
  2. P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212.
  3. J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
  4. R. E. Edwards, Fourier Series, Vol. 2, Springer, New York 1982.
  5. C. Graham, K. Hare and D. Ritter, The size of Lp-improving measures, J. Funct. Anal. 84 (1989), 472-495.
  6. C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York 1979.
  7. A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168-186.
  8. K. Hare, A characterization of Lp-improving measures, Proc. Amer. Math. Soc. 102 (1988), 295-299.
  9. K. Hare, Arithmetic properties of thin sets, Pacific J. Math. 131 (1988), 143-155.
  10. K. Hare, Properties and examples of (Lp,Lq) multipliers, Indiana Univ. Math. J. 38 (1989), 211-227.
  11. K. Hare, Union results for thin sets, Glasgow Math. J. 32 (1990), 241-254.
  12. K. Hare, The size of (L2,Lp) multipliers, Colloq. Math. 63 (1992), 249-262.
  13. B. Host et F. Parreau, Ensembles de Rajchman et ensembles de continuité, C. R. Acad. Sci. Paris 288 (1979), 899-902.
  14. B. Host et F. Parreau, Sur les mesures dont la transformée de Fourier-Stieltjes ne tend pas vers 0 à l'infini, Colloq. Math. 41 (1979), 285-289.
  15. I. Klemes, Idempotent multipliers of H1(T), Canad. J. Math. 39 (1987), 1223-1234.
  16. R. Larson, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss. 175, Springer, New York 1971.
  17. J. F. Méla, Mesures ε-idempotentes de norme bornée, Studia Math. 72 (1982), 131-149.
  18. D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 47 (1982), 113-117.
  19. A. Rajchman, Une classe de séries trigonométriques qui convergent presque partout vers zéro, Math. Ann. 101 (1929), 686-700.
  20. L. T. Ramsey and B. B. Wells, Jr., Fourier-Stieltjes transforms of strongly continuous measures, Michigan Math. J. 24 (1977), 13-19.
  21. C. Rickart, The General Theory of Banach Algebras, Van Nostrand, Princeton 1960.
  22. D. Ritter, Most Riesz product measures are Lp-improving, Proc. Amer. Math. Soc. 97 (1986), 291-295.
Pages:
303-314
Main language of publication
English
Received
1991-09-18
Accepted
1992-07-01
Published
1993
Exact and natural sciences