Download PDF - Tame $L^p$-multipliers
ArticleOriginal scientific textTame
Title
Tame -multipliers
Authors 1
Affiliations
- Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Abstract
We call an -multiplier m tame if for each complex homomorphism χ acting on the space of multipliers there is some and |a| ≤ 1 such that for all γ ∈ Γ. Examples of tame multipliers include tame measures and one-sided Riesz products. Tame multipliers show an interesting similarity to measures. Indeed we show that the only tame idempotent multipliers are measures. We obtain quantitative estimates on the size of -improving tame multipliers which are similar to those obtained for measures, but are false for non-tame multipliers. One-sided Riesz products are seen to play a similar role in the study of tame multipliers as Riesz products do in the study of measures.
Bibliography
- G. Brown, Riesz products and generalized characters, Proc. London Math. Soc. 30 (1975), 209-238.
- P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212.
- J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
- R. E. Edwards, Fourier Series, Vol. 2, Springer, New York 1982.
- C. Graham, K. Hare and D. Ritter, The size of
-improving measures, J. Funct. Anal. 84 (1989), 472-495. - C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York 1979.
- A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168-186.
- K. Hare, A characterization of
-improving measures, Proc. Amer. Math. Soc. 102 (1988), 295-299. - K. Hare, Arithmetic properties of thin sets, Pacific J. Math. 131 (1988), 143-155.
- K. Hare, Properties and examples of
multipliers, Indiana Univ. Math. J. 38 (1989), 211-227. - K. Hare, Union results for thin sets, Glasgow Math. J. 32 (1990), 241-254.
- K. Hare, The size of
multipliers, Colloq. Math. 63 (1992), 249-262. - B. Host et F. Parreau, Ensembles de Rajchman et ensembles de continuité, C. R. Acad. Sci. Paris 288 (1979), 899-902.
- B. Host et F. Parreau, Sur les mesures dont la transformée de Fourier-Stieltjes ne tend pas vers 0 à l'infini, Colloq. Math. 41 (1979), 285-289.
- I. Klemes, Idempotent multipliers of
, Canad. J. Math. 39 (1987), 1223-1234. - R. Larson, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss. 175, Springer, New York 1971.
- J. F. Méla, Mesures ε-idempotentes de norme bornée, Studia Math. 72 (1982), 131-149.
- D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 47 (1982), 113-117.
- A. Rajchman, Une classe de séries trigonométriques qui convergent presque partout vers zéro, Math. Ann. 101 (1929), 686-700.
- L. T. Ramsey and B. B. Wells, Jr., Fourier-Stieltjes transforms of strongly continuous measures, Michigan Math. J. 24 (1977), 13-19.
- C. Rickart, The General Theory of Banach Algebras, Van Nostrand, Princeton 1960.
- D. Ritter, Most Riesz product measures are
-improving, Proc. Amer. Math. Soc. 97 (1986), 291-295.