ArticleOriginal scientific text

Title

Singular integrals with highly oscillating kernels on the product domains

Authors 1

Affiliations

  1. Department of Mathematics, Oregon State University, Corvallis, Oregon 97331, U.S.A.

Bibliography

  1. C. Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc. 77 (1971), 744-745.
  2. R. Fefferman, Singular integrals on product domains, ibid. 4 (1981), 195-201.
  3. R. Fefferman and E. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), 117-143.
  4. J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, 1985.
  5. E. Prestini, Uniform estimates for families of singular integrals and double Fourier series, J. Austral. Math. Soc. Ser. A 41 (1986), 1-12.
  6. E. Prestini, Singular integrals on product spaces with variable coefficients, Ark. Mat. 25 (1987), 275-287.
  7. E. Prestini, L2 boundedness of highly oscillatory integrals on product domains, Proc. Amer. Math. Soc. 104 (1988), 493-497.
  8. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
Pages:
293-302
Main language of publication
English
Received
1992-02-15
Accepted
1992-06-10
Published
1993
Exact and natural sciences